Hostname: page-component-76fb5796d-vvkck Total loading time: 0 Render date: 2024-04-25T09:44:00.742Z Has data issue: false hasContentIssue false

Growth-inhibitory effects of proteinaceous fractions from resistant wild bean accessions on the bean weevil, Acanthoscelides obtectus

Published online by Cambridge University Press:  19 September 2011

Luisa F. Fory
Affiliation:
Biotechnology Research Unit, A.A. 6713 Cali, Colombia Bean Programme, Centro Internacional de Agricultura Tropical, A.A. 6713 Cali, Colombia
Fernando A. Tenjo
Affiliation:
Biotechnology Research Unit, A.A. 6713 Cali, Colombia
Carmen E. Posso
Affiliation:
Bean Programme, Centro Internacional de Agricultura Tropical, A.A. 6713 Cali, Colombia
Cesar Cardona
Affiliation:
Bean Programme, Centro Internacional de Agricultura Tropical, A.A. 6713 Cali, Colombia
Jorge E. Mayer
Affiliation:
Biotechnology Research Unit, A.A. 6713 Cali, Colombia
Get access

Abstract

This study was conducted to identify the individual biochemical factors involved in the resistance observed in a few Mexican bean accessions against the bean weevil, Acanthoscelides obtectus (Say) (Coleoptera: Bruchidae). Soluble proteins from different bean genotypes were separated by fractionated acetone precipitation. Insects were reared on artifical seeds composed of a susceptible background bean flour enriched with the different protein fractions. At low doses (2% w/w), the 0–20% and 20–40% acetone fractions of the resistant bean accessions G 12954 and G 12880 inhibited larval growth of the bean weevil, but not of a related species, the Mexican bean weevil, Zabrotes subfasciatus (Boheman). The 0–20% fraction caused the highest mortality of first instar larvae. The 60–80% acetone fraction contains general resistance factors, like α-amylase and protease inhibitors, which when enriched in artifical seeds led to a strong depression of insect growth for resistant and susceptible bean accessions alike. These factors should also be taken into account in breeding for multigenic, durable resistance, in order to exploit the synergism between general and specific resistance factors.

Résumé

Cette étude a été menée afin d'identifier des facteurs biochimiques particuliers impliqués dans la résistance observée sur quelques acquisitions de haricot mexicain contre le charançon du haricot, Acanthoscelides obtectus (Say) (Coleoptera: Bruchidae). Des protéines solubles obtenues à partir de différentes génotypes de haricot ont été séparées par précipitation fractionnée à l'acétone. Des insectes ont été élevés sur des graines artificielles composées à partir d'une farine de haricot susceptible enrichie avec les différentes fractions protéiniques. Aux faibles concentrations (2% w/w), des fractions acétonées de 0–20% et 20–40% des acquisitions de haricot résistant G 12954 et G 12880, ont inhibé la croissance larvaire du charançon du haricot, mais non celle de l'espèce voisine de charançon mexicaine, Zabrotes subfasciatus (Boheman). La fraction 0–20% a provoqué la mortalité élevée chez les larves du 1er stade. La fraction acétonée 60–80% contient des facteurs de la résistance générale, tels que α-amylase et des inhibiteurs de la protease qui, lorsqu'ils sont enrichis dans des farines, aboutissent à une forte baisse de la croissance pour des acquisitions des haricots tant résistants que susceptibles. Ces facteurs doivent être pris en compte dans une selection multigénique durable, afin d'exploiter le synergisme entre des facteurs de la résistance générale et spécifique.

Type
Research Articles
Copyright
Copyright © ICIPE 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Altabella, T. and Chrispeels, M. J. (1990) Tobacco plants transformed with the bean α-amylase in their seeds. Plant Physiol. 93, 805810.CrossRefGoogle ScholarPubMed
Cardona, C. and Karel, A. K. (1990) Key pests and other invertebrate pests of beans. In Insect Pests of Food Legumes (Edited by Singh, S. R.), pp. 157191. John Wiley and Sons, Chichester, UK.Google Scholar
Cardona, C., Posso, C. E., Kornegay, J., Valor, J. and Serrano, M. (1989) Antibiosis effects of wild dry bean accessions on the Mexican bean weevil and the bean weevil (Coleoptera: Bruchidae). J. Econ. Entomol. 82, 310315.Google Scholar
Englard, S. and Seifter, S. (1990) Precipitation techniques. Meth. Enzymol. 182, 285300.CrossRefGoogle ScholarPubMed
Fory, L. F., Tenjo, F., Posso, C. E., Cardona, C. and Mayer, J. E. (1994) Biochemical basis of resistance to the bean weevil, Acanthoscelides obtectus (Say). In Proceedings of the Second International Meeting of the Phaseolus Beans Advanced Biotechnology Research Network (Edited by Roca, W. M., Mayer, J. E., Pastor-Corrales, M. A. and Tohme, J.), pp. 305312. CIAT, 7–10 September 1993, Cali, Colombia.Google Scholar
Gatehouse, A. M. R., Minney, B. H., Dobie, P. and Hilder, V. (1990) Biochemical resistance to bruchid attack in legume seeds; investigation and exploitation. In Bruchids and Legumes: Economics, Ecology and Coevolution (Edited by Fujii, K., Gatehouse, A. M. R., Johnson, C. D., Mitchell, R. and Yoshida, T.), pp. 241256. Kluwer Academic Publishers, Dordrecht, the Netherlands.Google Scholar
John, M. E. and Long, C. M. (1990) Sequence analysis of arcelin 2, a lectin-like plant protein. Gene 86, 171176.CrossRefGoogle ScholarPubMed
Kornegay, J. and Cardona, C. (1991) Inheritance of resistance to Acanthoscelides obtectus in a wild common bean accession crossed to commercial bean cultivars. Euphytica 52, 103111.CrossRefGoogle Scholar
Laemmli, U. K. (1970) Cleavage of structural proteins during the assembling of the head of bacteriophage T4. Nature 227, 680685.CrossRefGoogle Scholar
Minney, H. P., Gatehouse, A. M. R., Dobie, P., Dendy, J., Cardona, C. and Gatehouse, J. (1990) Biochemical basis of seed resistance to Zabrotes subfasciatus (bean weevil) in Phaseolus vulgaris (common bean); a mechanism for arcelin toxicity. J. Insect Physiol. 36, 757767.CrossRefGoogle Scholar
Mirkov, T. E., Pueyo, J. J., Mayer, J. E., Kjemtrup, S., Cardona, C. and Chrispeels, M. J. (1994) Molecular and functional analysis of α-amylase inhibitor of the common bean Phaseolus vulgaris. In Proceedings of the Second International Scientific Meeting of the Phaseolus Beans Advanced Biotechnology Research Network (Edited by Roca, W. M., Mayer, J. E., Pastor-Corrales, M. A. and Tohme, J.), pp. 296304. CIAT, 7–10 September 1993, Cali, Colombia.Google Scholar
Moreno, J. and Chrispeels, M. J. (1989) A lectin gene encodes the α-amylase inhibitor of the common bean. Proc. Natl. Acad. Sci. USA. 86, 78857889.Google Scholar
Osborn, T. C., Alexander, D. C., Sun, S. S. M., Cardona, C. and Bliss, F. A. (1988) Insecticidal activity and lectin homology of arcelin seed protein. Science 240, 207210.CrossRefGoogle Scholar
SAS Institute (1985) SAS User's Guide: Statistics, version 5 ed. SAS Institute, Cary, NC, USA.Google Scholar
Shade, R. E., Murdock, L. L., Foard, D. E. and Pomeroy, M. A. (1986) Artificial seed system for bioassay of cowpea weevil (Coleoptera: Bruchidae) growth and development. Environ. Entomol. 15, 12861291.Google Scholar
van Schoonhoven, A. (1976) Pests of stored beans and their economic importance in Latin America. In Proc. Symposium on Tropical Stored Products Entomology held at the 15th International Congress of Entomology Soc. Am., pp. 691698. College Park, MD, USA.Google Scholar
van Schoonhoven, A., Cardona, C. and Valor, J. (1983) Resistance to the bean weevil and the Mexican bean weevil (Coleoptera: Bruchidae) in noncultivated common bean accessions. J. Econ. Entomol. 76, 12551259.CrossRefGoogle Scholar