Skip to main content Accessibility help
×
Home
Hostname: page-component-768dbb666b-9qwsl Total loading time: 0.247 Render date: 2023-02-05T21:09:53.744Z Has data issue: true Feature Flags: { "useRatesEcommerce": false } hasContentIssue true

Grassland Response to Herbicides and Seeding of Native Grasses 6 Years Posttreatment

Published online by Cambridge University Press:  20 January 2017

Bryan A. Endress
Affiliation:
Division of Applied Plant Ecology, Institute for Conservation Research, San Diego Zoo Global, 15600 San Pasqual Valley Road, Escondido, CA 92027
Catherine G. Parks*
Affiliation:
Pacific Northwest Research Station, U.S. Department of Agriculture Forest Service, Forestry and Range Sciences Laboratory, 1401 Gekeler Lane, La Grande, OR 97850
Bridgett J. Naylor
Affiliation:
Pacific Northwest Research Station, U.S. Department of Agriculture Forest Service, Forestry and Range Sciences Laboratory, 1401 Gekeler Lane, La Grande, OR 97850
Steven R. Radosevich
Affiliation:
Department of Forest Ecosystems and Society, Oregon State University, Corvallis, OR 97331
Mark Porter
Affiliation:
Wallowa Resources, 200 W. North St., Enterprise, OR 97828
*
Corresponding author's E-mail: cparks01@fs.fed.us

Abstract

Herbicides are the primary method used to control exotic, invasive plants. This study evaluated restoration efforts applied to grasslands dominated by an invasive plant, sulfur cinquefoil, 6 yr after treatments. Of the five herbicides we evaluated, picloram continued to provide the best control of sulfur cinquefoil over 6 yr. We found the timing of picloram applications to be important to the native forb community. Plots with picloram applied in the fall had greater native forb cover. However, without the addition of native perennial grass seeds, the sites became dominated by exotic grasses. Seeding resulted in a 20% decrease in exotic grass cover. Successful establishment of native perennial grasses was not apparent until 6 yr after seeding. Our study found integrating herbicide application and the addition of native grass seed to be an effective grassland restoration strategy, at least in the case where livestock are excluded.

Type
Research
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Belsky, A. J. and Gelbard, J. L. 2000. Livestock Grazing and Weed Invasions in the Arid West. Portland Oregon Natural Desert Association. 31 p.Google Scholar
Bunting, S. C., Kingery, J. L., Hemstrom, M. A., Schroader, M. A., Gravenmier, R. A., and Hann, W. J. 2002. Altered Rangeland Ecosystems in the Interior Columbia Basin. USDA Forest Service PNW-GTR-553. 71 p.CrossRefGoogle Scholar
Bussan, A. J. and Dyer, W. E. 1999. Herbicides and rangeland. Pages 116132 in Sheley, R. L. and Petroff, J. K., eds. Biology and Management of Noxious Rangeland Weeds. Corvallis, OR Oregon State University Press.Google Scholar
DiTomaso, J. M. 2000. Invasive weeds in rangelands: species, impacts, and management. Weed Sci. 48:255265.Google Scholar
Dwire, K. A., Parks, C. G., McInnis, M. L., and Naylor, B. J. 2006. Seed production and dispersal of sulfur cinquefoil in northeast Oregon. Rangeland Ecol. Manag. 59:6372.CrossRefGoogle Scholar
Endress, B. A., Naylor, B. J., and Parks, C. G. 2007. Landscape factors influencing the abundance and dominance of the invasive plant Potentilla recta . Rangeland Ecol. Manag. 24:612.Google Scholar
Endress, B. A., Parks, C. G., Naylor, B. J., and Radosevich, S. R. 2008. Herbicide and native grass seeding effects on sulfur cinquefoil (Potentilla recta)-infested grasslands. Invasive Plant Sci. Manag. 1:5058.CrossRefGoogle Scholar
Enloe, S. F., DiTomaso, J. M., Orloff, S. B., and Drake, D. J. 2005. Perennial grass establishment integrated with clopyralid treatment for yellow starthistle management on annual range. Weed Technol. 19:94101.CrossRefGoogle Scholar
Franklin, J. F. and Dyrness, C. T. 1988. Natural Vegetation of Oregon and Washington. Corvallis, OR Oregon State University Press. 452 p.Google Scholar
Hobbs, R. J. and Humphries, S. E. 1995. An integrated approach to the ecology and management of plant invasions. Conserv. Biol. 9:761770.CrossRefGoogle Scholar
Johnson, C. G. and Swanson, D. K. 2005. Bunchgrass Plant Communities of the Blue and Ochoco Mountains: A Guide for Managers. USDA Forest Service PNW-GTR-641. 119 p.Google Scholar
Lesica, P. and Ellis, M. 2010. Demography of sulfur cinquefoil (Potentilla recta) in a northern Rocky Mountain grassland. Invasive Plant Sci. Manag. 3:139147.CrossRefGoogle Scholar
Mangold, J. M., Poulsen, C. L., and Carpinelli, M. F. 2007. Revegetating Russian knapweed (Acroptilon repens) infestations using morphologically diverse species and seedbed preparation. Rangeland Ecol. Manag. 60:378385.CrossRefGoogle Scholar
Naylor, B. J., Endress, B. A., and Parks, C. G. 2005. Multiscale detection of sulfur cinquefoil using aerial photography. Rangeland Ecol. Manag. 58:447451.CrossRefGoogle Scholar
Ortega, Y. and Pearson, D. E. 2010. Effects of picloram application on community dominants vary with initial levels of spotted knapweed (Centaurea stoebe) invasion. Invasive Plant Sci. Manag. 3:7080.CrossRefGoogle Scholar
Ortega, Y. and Pearson, D. E. 2011. Long-term effects of weed control with picloram along a gradient of spotted knapweed invasion. Rangeland Ecol. Manag. 64:6777.CrossRefGoogle Scholar
Parks, C. G., Radosevich, S. R., Endress, B. A., Naylor, B. J., Anzinger, D., Rew, L. J., Maxwell, B. D., and Dwire, K. A. 2005. Natural and land-use history of the Northwest mountain ecoregions (USA) in relation to patterns of plant invasions. Perspect. Plant Ecol. 7:137158.CrossRefGoogle Scholar
Pearson, D. E. and Ortega, Y. 2009. Managing invasive plants in natural areas: moving beyond control. Pages 121 in Columbus, F., ed. Weeds: Management, Economic Impacts and Biology. Hauppauge, NY Nova.Google Scholar
Perkins, D. L., Parks, C. G., Dwire, K. A., Endress, B. A., and Johnson, K. L. 2006. Age structure and age-related performance of sulfur cinquefoil (Potentilla recta). Weed Sci. 54:8793.CrossRefGoogle Scholar
Pokorny, M. L., Sheley, R. L., Zabinski, C. A., Engel, R. E., Svejcar, T. J., and Borkowski, J. J. 2005. Plant functional group diversity as a mechanism for invasion resistance. Restor. Ecol. 13:448459.CrossRefGoogle Scholar
Rice, P. 1999. Sulfur Cinquefoil. Pages 382388 in Sheley, R. L. and Petroff, J. K., eds. Biology and Management of Noxious Rangeland Weeds. Corvallis, OR Oregon State University Press.Google Scholar
Rice, P. M., Toney, J. C., Bedunah, D. J., and Carlson, C. E. 1997. Plant community diversity and growth form responses to herbicide applications for control of Centaurea maculosa. J. Appl. Ecol. 34:13971412.CrossRefGoogle Scholar
Rinella, M. J., Maxwell, B. D., Fay, P. K., Weaver, T., and Sheley, R. 2009. Control effort exacerbates invasive-species problem. Ecol. Appl. 19:155162.CrossRefGoogle ScholarPubMed
Sheley, R. L. and Denny, M. K. 2006. Community response of nontarget species to herbicide application and removal of the nonindigenous invader Potentilla recta L. West. N. Am. Nat. 66:5563.CrossRefGoogle Scholar
Sheley, R. L. and Krueger-Mangold, J. 2003. Principles for restoring invasive plant–infested rangeland. Weed Sci. 51:260265.CrossRefGoogle Scholar
Simmons, M. T., Windhager, S., Power, P., Lott, J., Lyons, R. K., and Schwope, C. 2007. Selective and non-selective control of invasive pants: the short-term effects of growing-season prescribed fire, herbicide, and mowing in two Texas prairies. Restor. Ecol. 15:662669.CrossRefGoogle Scholar
Vasquez, E. A., James, J. J., Monaco, T. A., and Cummings, D. C. 2010. Invasive plants on rangelands: a global threat. Rangelands. 32:35.CrossRefGoogle Scholar
Zouhar, K. 2003. Potentilla recta. http://www.fs.fed.us/database/feis/plants/forb/potrec/all.html. Accessed: May 2, 2011.Google Scholar
14
Cited by

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Grassland Response to Herbicides and Seeding of Native Grasses 6 Years Posttreatment
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Grassland Response to Herbicides and Seeding of Native Grasses 6 Years Posttreatment
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Grassland Response to Herbicides and Seeding of Native Grasses 6 Years Posttreatment
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *