Hostname: page-component-848d4c4894-tn8tq Total loading time: 0 Render date: 2024-06-22T10:41:06.111Z Has data issue: false hasContentIssue false

Management of the Invasive Hill Raspberry (Rubus niveus) on Santiago Island, Galapagos: Eradication or Indefinite Control?

Published online by Cambridge University Press:  20 January 2017

Jorge Luis Renteria*
Department of Biology, Imperial College London, Silwood Park Campus, Ascot, Berkshire SL5 7PY, UK
Mark R. Gardener
Charles Darwin Foundation, Puerto Ayora, Galapagos Islands, Ecuador and Research Institute for Environment and Livelihoods, Charles Darwin University, Darwin, Northern Territory, Australia
F. Dane Panetta
Invasive Plant Science, Biosecurity Queensland, Department of Employment, Economic Development and Innovation, Ecosciences Precinct, GPO Box 267, Brisbane Qld 4001, Australia
Mick J. Crawley
Department of Biology, Imperial College London, Silwood Park Campus, Ascot, Berkshire SL5 7PY, UK
Corresponding author's E-mail:


The eradication of an invasive plant species can provide substantial ecological and economic benefits by eliminating completely the negative effects of the weed and reducing the high cost of continuing control. A 5-yr program toward the eradication of hill raspberry (Rubus niveus Thunb.) in Santiago Island is evaluated using delimitation and extirpation criteria, as well as assessment of the ecological community response to management techniques. Currently, hill raspberry is located in the humid zone of Santiago island. It is distributed over three main infestations, small patches, and many scattered individuals within an area of approximately 1,000 ha. New infestations are constantly being found; every year, new detections add an area of approximately 175 ha. Adult and juvenile individuals are still found, both beyond and within known infestations. Both plant and seed bank density of hill raspberry decreased over time where infestations were controlled. Species composition in the seed bank and existing vegetation were significantly different between areas under intensive control and adjacent uninvaded forest. After 5 yr of intensive management, delimitation of hill raspberry has not been achieved; new populations are found every year, increasing the infested area that requires management. Off-target effects on native species resulting from control efforts seem to be substantial. Although a vast increase in economic investment would allow intensive searching that might enable all individuals to be found and controlled, the resultant disturbance and off-targets effects could outweigh the conservation benefits of eradication.

Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


Literature Cited

Atkinson, R., Rentería, J., and Simbaña, W. 2008. The consequences of herbivore eradication on Santiago: are we in time to prevent ecosystem degradation again? Page 121124 in Cayot, L. J. and Toral, M. V. eds. Galapagos Report 2007–2008. Puerto Ayora, Galapagos, Ecuador Charles Darwin Foundation, Galapagos National Park, INGALA.Google Scholar
Bomford, M. and O'Brien, P. 1995. Eradication or control for vertebrate pests? Wildlife Soc. Bull. 23:249255.Google Scholar
Brooks, S., Panetta, F. D., and Sydes, T. 2009. Progress towards the eradication of three melastome shrub species from northern Australian rainforests. Plant Prot. Q. 24:7178.Google Scholar
Buddenhagen, C. E. 2006. The successful eradication of two blackberry species Rubus megalococcus and R. adenotrichos (Rosaceae) from Santa Cruz Island, Galapagos, Ecuador. Pac. Conserv. Biol. 12:272278.Google Scholar
Buddenhagen, C. E. and Jewell, K. J. 2006. Invasive plant seed viability after processing by some endemic Galapagos birds. Ornitol. Neotrop. 17:7380.Google Scholar
Cacho, O., Spring, D., Pheloung, P. C., and Hester, S. 2006. Evaluating the feasibility of eradicating an invasion. Biol. Invasions 8:903913.Google Scholar
Cacho, O. J., Hester, S., and Spring, D. 2007. Applying search theory to determine the feasibility of eradicating an invasive population in natural environments. Aust. J. Agric. Res. Econ. 51:425443.Google Scholar
Carlson, A. M. and Gorchov, D. L. Effects of herbicide on the invasive biennial Alliaria petiolata (garlic mustard) and initial responses of native plants in a southwestern Ohio forest. Restor. Ecol. 2004. 12:559567.Google Scholar
Carrion, V., Donlan, C. J., Campbell, K., Lavoie, C., and Cruz, F. 2007. Feral donkey (Equus asinus) eradications in the Galapagos. Biodivers. Conserv. 16:437445.Google Scholar
Crone, E. E., Marler, M., and Pearson, D. E. 2009. Non-target effects of broadleaf herbicide on a native perennial forb: a demographic framework for assessing and minimizing impacts. J. Appl. Ecol. 46:673682.Google Scholar
Cunningham, D. C., Barry, S. C., Woldendorp, G., and Burgess, M. B. 2004. A framework for prioritizing sleeper weeds for eradication. Weed Technol. 18:11891193.Google Scholar
Endress, B. A. Herbicide and native grass seeding effects on sulfur cinquefoil (Potentilla recta)–infested grasslands. Invasive Plant Sci. Manag. 2008. 1:50.Google Scholar
Eriksson, O. and Ehrlén, J. 2001. Landscape fragmentation and the viability of plant populations. Page 157175 in Silvertown, J. and Antonovics, J. eds. Integrating Ecology and Evolution in a Spatial Context. Oxford Blackwell Science.Google Scholar
FCD and DPNG. 2009. Diagnóstico y planificación para el desarrollo de un agente de control biológico para Rubus niveus en las islas Galápagos. Puerto Ayora, Galápagos, Ecuador Fundación Charles Darwin–Dirección del Parque Nacional Galápagos. 166 p.Google Scholar
Gardener, M. R., Atkinson, R., and Renteria, J. L. 2010a. Eradications and people: lessons from the plant eradication program in Galapagos. Restor. Ecol. 18:2029.Google Scholar
Gardener, M. R., Cordell, S., Anderson, M., and Tunnicliffe, R. D. 2010b. Evaluating the long-term project to eradicate the rangeland weed Martynia annua L.: linking community with conservation. Rangeland J. 32:407417.Google Scholar
Graber, R. E. and Thompson, D. F. 1978. Seeds in the organic layers and soil of four beech-birch-maple stands. USDA Forest Service, Research Paper NE-401.Google Scholar
Guerrero, A. and Tye, A. 2009. Darwin's finches as seed predators and dispersers. Wilson J. Ornithol. 121:752764.Google Scholar
Hamann, O. 1981. Plant communities of the Galapagos Islands. Dan. Bot. Ark. 34:1163.Google Scholar
Hamann, O. 2001. Demographic studies of three indigenous stand-forming plant taxa (Scalesia, Opuntia, and Bursera) in the Galápagos Islands, Ecuador. Biodivers. Conserv. 10:223250.Google Scholar
Itow, S. 1995. Phytogeography and ecology of Scalesia (Compositae) endemic to the Galápagos Islands. Pac. Sci. 49:1730.Google Scholar
Itow, S. 2003. Zonation pattern, succession process and invasion by aliens in species poor insular vegetation of the Galápagos Islands. Global Environ. Res. 7:3958.Google Scholar
Landázuri, O. d. P. 2002. Distribución, fenología reproductiva y dynámica del banco de semillas de mora (Rubus niveus Thunb) en la parte alta de la isla Santa Cruz, Galápagos. Undergraduate dissertation. Quito Universidad Central del Ecuador. 184 p.Google Scholar
Lavoie, C., Cruz, F., Carrion, G. V., Campbell, K., Donland, C. J., Harcourt, S., and Moya, M. 2007. The thematic atlas of Project Isabela: an illustrative document describing, step-by-step, the biggest successful goat eradication project on the Galapagos Islands 1998–2006. Puerto Ayora, Galapagos, Ecuador Charles Darwin Foundation. 58 p.Google Scholar
Mack, R. N. and Lonsdale, W. M. 2002. Eradicating invasive plants: hard-won lessons for islands. Page 164172 in Veitch, D. and Clout, M., eds. Turning the Tide: The Eradication of Invasive Species. Auckland, New Zealand Invasive Species Specialty Group of the World Conservation Union (IUCN).Google Scholar
Marrs, R. H. 1985. The effects of potential bracken and scrub control herbicides on lowland Calluna and grass heath communities in East Anglia, UK. Biol. Conserv. 32:1332.Google Scholar
Morton, J. 1987. Mysore Raspberry. Page 109110 in Morton, J. F., ed. Fruits of Warm Climates. Miami Florida Flair Books.Google Scholar
Motooka, P., Castro, L., Nelson, D., Nagai, G., and Ching, L. 2003. Weeds of Hawaii's Pastures and Natural Areas: An Identification and Management Guide. Honolulu College of Tropical Agriculture and Human Resources, University of Hawaii.Google Scholar
Myers, J. H., Savoie, A., and Randen, E. v. 1998. Eradication and pest management. Annu. Rev. Entomol. 43:471491.Google Scholar
Olmsted, N. W. and Curtis, J. D. 1947. Seeds of the forest floor. Ecology 28:4952.Google Scholar
Oosting, H. J. and Humphreys, M. E. 1940. Buried viable seeds in a successional series of old field and forest soils. Bull. Torrey Bot. Club 67:253273.Google Scholar
Panetta, F. D. 1982. In situ potential for rehabilitation of sites dominated by blackberry (Rubus polyanthemos Lindeb.). Weed Res. 22:16.Google Scholar
Panetta, F. D. 2004. Seed banks: the bane of the weed eradicator. Page 523526 in Proceedings of the 14th Australian Weeds Conference. Sydney Weed Society of New South Wales.Google Scholar
Panetta, F. D. 2007. Evaluation of weed eradication programs: containment and extirpation. Divers. Distrib. 13:3341.Google Scholar
Panetta, F. D. 2009. Weed eradication—an economic perspective. Invasive Plant Sci. Manag. 2:360368.Google Scholar
Panetta, F. D., Cacho, O., Hester, S., Sims-Chilton, N., and Brooks, S. 2011. Estimating and influencing the duration of weed eradication programmes. J. Appl. Ecol. 48:980988.Google Scholar
Panetta, F. D. and Groves, R. H. 1990. Weed management and revegetation programs. Proc. Ecol. Soc. Aust. 16:545549.Google Scholar
Panetta, F. D. and Lawes, R. 2005. Evaluation of weed eradication programs: the delimitation of extent. Divers. Distrib. 11:435442.Google Scholar
Panetta, F. D. and Lawes, R. 2007. Evaluation of the Australian branched broomrape (Orobanche ramosa) eradication program. Weed Sci. 55:644651.Google Scholar
Panetta, F. D. and Timmins, S. 2004. Evaluating the feasibility of eradication for terrestrial weed incursions. Plant Prot. Q. 19:511.Google Scholar
Rejmánek, M. and Pitcairn, M. J. 2002. When is eradication of pest plants a realistic goal? Page 249253 in Veitch, D. and Clout, M., eds. Turning the Tide: The Eradication of Invasive Species. Auckland, New Zealand Invasive Species Specialty Group of the World Conservation Union (IUCN).Google Scholar
Rentería, J. L. and Buddenhagen, C. E. 2006. Invasive plants in the Scalesia pedunculata forest at Los Gemelos, Santa Cruz, Galápagos. Not. Galápagos 64:3135.Google Scholar
Renteria, J. L., Atkinson, R., Guerrero, A. M., and Mader, J. 2006. Manual de identificacion y manejo de malezas en las Islas Galápagos. Second ed. Santa Cruz, Galápagos Fundación Charles Darwin.Google Scholar
Rice, P. M. and Toney, J. C. 1998. Exotic weed control treatments for conservation of fescue grassland in Montana. Biol. Conserv. 85:8395.Google Scholar
Rice, P. M., Toney, J. C., Bedunah, D. J., and Clinton, E. C. 1997. Plant community diversity and growth form responses to herbicide applications for control of Centaurea maculosa . J. Appl. Ecol. 34:13971412.Google Scholar
Ruiz Cevallos, J. R. 1992. Estudio fenologico y metodos de control de las especies: Lantana camara L. (“Supirrosa”) Verbenaceae y Rubus niveus Thunberg (“Mora”) Rosacea. Undergraduate dissertation. Quito Universidad Central del Ecuador. 185 p.Google Scholar
Santos, G. L., Cuddihy, L. W., and Stone, C. P. 1991. Control of yellow Himalayan raspberry (Rubus ellipticus Sm.) with cut stump herbicide treatments in Hawaii Volcanoes National Park. Honolulu (HI) Cooperative National Park Resources Studies Unit, University of Hawaii at Manoa, Department of Botany. 25 p.Google Scholar
Simberloff, D. 2003. Eradication—preventing invasions at the outset. Weed Sci. 51:247253.Google Scholar
Simberloff, D., Parker, I. M., and Windle, P. N. 2005. Introduced species policy, management, and future research needs. Front. Ecol. Environ. 3:1220.Google Scholar
Soria, M. 2006. Avian seed dispersers of the invasive Rubus niveus (Rosaceae) in Santa Cruz Island, Galapagos, Ecuador. Master's thesis. St. Louis: University of Missouri–St. Louis. 52 p.Google Scholar
Timmins, S. M. and McAlpine, K. G. 2008. Do weed managers need to know about weed impacts? Page 26 in Proceedings of the 16th Australian Weeds Conference. Brisbane Queensland Weed Society.Google Scholar
Turner, P. J., Scott, J. K., and Spafford, H. 2008. The ecological barriers to the recovery of bridal creeper (Asparagus asparagoides (L.) Druce) infested sites: impacts on vegetation and the potential increase in other exotic species. Austral Ecol. 33:713722.Google Scholar
Tye, A. 2003. Plant research for conservation in Galapagos. Report for the years 1998–2003. Puerto Ayora, Galapagos, Ecuador Charles Darwin Foundation for the Galapagos Islands. 51 p.Google Scholar
Tye, A. 2007. Cost of rapid-response eradication of a recently introduced plant, tropical kudzu (Pueraria phaseoloides), from Santa Cruz Island, Galapagos. Plant Prot. Q. 22:3334.Google Scholar
Weber, E. 2003. Invasive Plant Species of the World: A Reference Guide to Environmental Weeds. Wallingford, UK CABI Publishing. 560 p.Google Scholar
Whitney, G. 1986. A demographic analysis of Rubus idaeus L. and Rubus pubescens Can. J. Bot. 64:29162921.Google Scholar
Wittenberg, R. and Cock, M. J. W. 2001. Invasive Alien Species: A Toolkit of Best Prevention and Management Practices. Wallingford, UK CABI Publishing. 228 p.Google Scholar
Woldendorp, G., Bomford, M., Barry, S., Panetta, F. D., and Cunningham, D. 2004. Development of strategies for eradication of selected agricultural sleeper weeds. Page 492495 in Proceedings of the 14th Australian Weeds Conference. Sydney Weed Society of New South Wales.Google Scholar
Zavaleta, E. 2000. The economic value of controlling an invasive shrub. Ambio 29:462467.Google Scholar
Zavaleta, E. S., Hobbs, R. J., and Mooney, H. A. 2001. Viewing invasive species removal in a whole-ecosystem context. Trends Ecol. Evol. 16:454459.Google Scholar