Skip to main content Accessibility help
×
Home

BENEFITS OF AN ANIMAL TRACEABILITY SYSTEM FOR A FOOT-AND-MOUTH DISEASE OUTBREAK: A SUPPLY-DRIVEN SOCIAL ACCOUNTING MATRIX APPROACH

  • MAN-KEUN KIM (a1), C. MICHAEL UKKESTAD (a2), HERNAN A. TEJEDA (a3) and DEEVON BAILEY (a1)

Abstract

This study reports the findings for an analysis using the computer program NAADSM (North American Animal Disease Spread Model) and a supply-driven social accounting matrix to examine the impact of a hypothetical foot-and-mouth disease (FMD) outbreak in a relatively isolated part of the United States, Utah, under various levels of livestock traceability. The analysis demonstrates that a significant regional economic impact in Utah would result from an FMD outbreak but that improved levels of traceability would be very important in helping to reduce the negative economic consequences of the outbreak.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      BENEFITS OF AN ANIMAL TRACEABILITY SYSTEM FOR A FOOT-AND-MOUTH DISEASE OUTBREAK: A SUPPLY-DRIVEN SOCIAL ACCOUNTING MATRIX APPROACH
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      BENEFITS OF AN ANIMAL TRACEABILITY SYSTEM FOR A FOOT-AND-MOUTH DISEASE OUTBREAK: A SUPPLY-DRIVEN SOCIAL ACCOUNTING MATRIX APPROACH
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      BENEFITS OF AN ANIMAL TRACEABILITY SYSTEM FOR A FOOT-AND-MOUTH DISEASE OUTBREAK: A SUPPLY-DRIVEN SOCIAL ACCOUNTING MATRIX APPROACH
      Available formats
      ×

Copyright

This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

Corresponding author

*Corresponding author's e-mail: mk.kim@usu.edu

Footnotes

Hide All

This research was supported by the Utah Agricultural Experiment Station, Utah State University and approved as journal paper number 8799. The authors appreciate the thoughtful comments of three anonymous reviewers.

Footnotes

References

Hide All
Bailey, D.Political Economy of the U.S. Cattle and Beef Industry: Innovation Adoption and Implications for the Future.” Journal of Agricultural and Resource Economics 32,3(2007):403–16.
Bailey, D., and Slade, J.. “Factors Influencing Support for a National Animal Identification System for Cattle in the United States.” Economic Research Institute Study Papers, 283, Logan: Department of Economics, Utah State University, 2004.
Brester, G., Dhuyvetter, K., Pendell, D., Schroeder, T., and Tonsor, G.. Economic Assessment of Evolving Red Meat Export Market Access Requirements for Traceability of Livestock and Meat. Manhattan: Department of Agricultural Economics, Kansas State University, Project Report submitted to the U. S. Meat Export Federation, March 2011. Internet site: http://www.agmanager.info/livestock/marketing/AnimalID/USMEF-Final-Project-Report-Tonsor_03-30-11.pdf (Accessed March 12, 2015).
Cozzens, T., Gebhardt, K., Shwiff, S., Lutman, M., and Pedersen, K.. “Modeling the Economic Impact of Feral Swine-Transmitted Foot-and-Mouth Disease: A Case Study from Missouri.” U.S. Department of Agriculture (USDA) National Wildlife Research Center – Staff Publications, Paper 1262, Fort Collins, CO: USDA, Animal and Plant Health Inspection Service, 2010. Internet site: http://digitalcommons.unl.edu/icwdm_usdanwrc/1262 (Accessed May 27, 2015).
Dickinson, D.L., and Bailey, D.. “Experimental Evidence on Willingness to Pay for Red Meat Traceability in the United States, Canada, the United Kingdom, and Japan.” Journal of Agricultural and Applied Economics 37,3(2005):537–48.
Dickinson, D.L., and Bailey, D.. “Meat Traceability: Are U.S. Consumers Willing to Pay for It?” Journal of Agricultural and Resource Economics 27,2(2002):348–64.
Ekboir, J.M. Potential Impact of Foot-and-Mouth Disease in California: The Role and Contribution of Animal Health Surveillance and Monitoring Services. Davis: Agricultural Issues Center, University of California, Davis. 1999.
Fernández-Macho, J., Gallastegui, C., and González, P.. “Economic Impacts of TAC Regulation: A Supply-Driven SAM Approach.” Fisheries Research 9,1–3(2008):225–34.
Garner, M.G., and Lack, M.B.. “An Evaluation of Alternative Control Strategies for Foot-and-Mouth Disease in Australia: A Regional Approach.” Preventive Veterinary Medicine 23,1–2(1995):932.
Ghosh, A.Input-Output Approach to an Allocative System.” Economica 25,1(1958):5864.
Greene, J.L. Animal Identification and Traceability: Overview and Issues. Washington, DC: Congressional Research Service (CRS), CRS Report for Congress R40832, November 2010.
Harvey, N., Reeves, A., Schoenbaum, M.A., Zagmutt-Vergara, F.J., Dube, C., Hill, A.E., Corso, B.A., McNab, W.B., Cartwright, C.I., and Salman, M.D.. “The North American Animal Disease Spread Model: A Simulation Model to Assist Decision Making in Evaluating Animal Disease Incursions.” Preventive Veterinary Medicine 82,3–4(2007):176–97.
Hill, A., and Reeves, A.. User's Guide for the North American Animal Disease Spread Model 3.0. 2nd ed. Fort Collins: Animal Population Health Institute, Colorado State University, 2006.
Hobbs, J.E., Bailey, D., Dickinson, D.L., and Haghiri, M.. “Traceability in the Canadian Red Meat Sector: Do Consumers Care?Canadian Journal of Agricultural Economics 53,1(2005):4765.
Holland, D., and Wyeth, P.. SAM Multipliers: Their Decomposition, Interpretation, and Relationship to Input-Output Multipliers. Pullman: College of Agricultural and Home Economics Research Center, Washington State University, Research Bulletin XB 1027, 1993.
Jones, J. “Effects of a Traceability System on the Economic Impact of a Foot-and-Mouth Disease Outbreak.” Master's thesis, Department of Agribusiness and Agricultural Economics, University of Manitoba, Winnipeg, MB, Canada, 2010.
Jordan, K. Testimony of Karen Jordan, DVM, National Milk Producers Federation, before the U.S. House of Representatives Committee on Agriculture Subcommittee on Livestock, Dairy, and Poultry Hearing on Animal Identification, March 11, 2009. 2009. Internet site: http://nmpf.org/files/file/Jordan%20Testimony%203-11-09.pdf (Accessed March 12, 2015).
Kim, M.-K.Supply Driven Input-Output Analysis: Case of 2010-2011 Foot-and-Mouth Disease in Korea.” Journal of Rural Development 38,2(2015):173–88.
Klobuchar, A. The Economic Contribution of America's Farmers and the Importance of Agricultural Exports. Washington, DC: Joint Economic Committee, U.S. Congress, September 2013. Internet site: http://www.jec.senate.gov/public/?a=Files.Serve&File_id=266a0bf3-5142-4545-b806-ef9fd78b9c2f (Accessed March 12, 2015).
Lawrence, J.D. National Animal Identification: Background and Basics for Cattle Producers. Ames: Iowa Beef Center, Iowa State University, PM 1962, August 2004. Internet site: http://www.extension.umn.edu/agriculture/beef/components/docs/national-animal-identification.pdf (Accessed March 13, 2015).
Leontief, W. The Structure of the American Economy. Cambridge, MA: Harvard University Press, 1941.
Leung, P., and Pooley, S.. “Regional Economic Impacts of Reductions in Fisheries Production: A Supply-Driven Approach.” Marine Resource Economics 16,4(2001):251–62.
Liddell, S., and Bailey, D.. “Market Opportunities and Threats to the U.S. Pork Industry Posed by Traceability Systems.” International Food and Agribusiness Management Review 4,3(2001):287302.
Lind, M. “Dairy Industry Approaches Goal in Traceability Compliance.” FoodOnline. July 8, 2014. Internet site: https://www.foodonline.com/doc/dairy-industry-approaches-goal-in-traceability-compliance-0001 (Accessed March 29, 2017).
Korea Rural Economic Institute (KREI). “2010~2011 Foot-and-Mouth Disease.” White paper, Seoul: KREI, 2011.
Mahul, O., and Durand, B.. “Simulated Economic Consequences of Foot-and-Mouth Disease Epidemics and Their Public Control in France.” Preventive Veterinary Medicine 47,1–2(2000):2338.
Mahul, O., and Gohin, A.. “Irreversible Decision Making in Contagious Animal Disease Control under Uncertainty: An Illustration Using FMD in Brittany.” European Review of Agricultural Economics 26,1(1999):3958.
Mardones, F., Perez, A., Sanchez, J., Alkhamis, M., and Carpenter, T.. “Parameterization of the Duration of Infection Stages of Serotype O Foot-and-Mouth Disease and Meta-analysis with Application to Simulation Models.” Veterinary Research 41,4(2010):115.
McReynolds, S.W. “Modeling Management of Foot-and-Mouth Disease in the Central United States.” Ph.D. dissertation, Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, 2013.
MIG Inc. IMPLAN System (data and software). Stillwater, MN: MIG Inc. Internet site: http://www.implan.com (Accessed March 29, 2017).
Moon, S.H., Park, W.S., and Soh, S.Y.. “Economical Ripple Effects of the Foot-and-Mouth on the Korean Economy Using Input-Output Analysis.” Korean Journal of Agricultural Management and Policy 40,3(2013):511–31.
Morell, S.F. “Update on the National Animal Identification System (NAIS).” Weston A. Price Foundation. April 10, 2006. Internet site: http://www.westonaprice.org/action-alerts/update-on-the-national-animal-identification-system-nais/ (Accessed March 12, 2015).
National Pork Producers Council (NPPC). “NPPC Urges Congress to Back Animal ID System.” Washington, DC: NPPC, 2009. Internet site: http://nppc.org/nppc-urges-congress-to-back-animal-id-system/ (Accessed March 12, 2015).
Paarlberg, P.L., Seitzinger, A.H., Lee, J.G., and Mathews, K.H. Jr. Economic Impacts of Foreign Animal Disease. Washington, DC: U.S. Department of Agriculture, Economic Research Service, Economic Research Report No. 57, May 2008.
Park, M., Jin, Y.H., and Bessler, D.A.. “The Impacts of Animal Disease Crises on the Korean Meat Market.” Agricultural Economics 39,2(2008):183–95.
Pendell, D.L. “Value of Animal Traceability System in Managing a Foot-and-Mouth Disease Outbreak in Southwest Kansas.” PhD dissertation, Department of Agricultural Economics, Kansas State University, Manhattan, 2006.
Pendell, D.L., Leatherman, J., Schroeder, T.C., and Alward, G.S.. “The Economic Impacts of a Foot-and-Mouth Disease Outbreak: A Regional Analysis.” Journal of Agricultural and Applied Economics 39,1(2007):1933.
Pendell, D.L., Marsh, T.L., Coble, K.H., Lust, J.L., and Szmania, S.C.. “Economic Assessment of FMDv Releases from the National Bio and Agro Defense Facility.” PLoS ONE 10,6(2015):e0129134. doi:10.1371/journal.pone.0129134.
Polo, C., and Valle, E.. “Input–Output and SAM models.” Handbook of Research Methods in Tourism: Quantitative and Qualitative Approaches. Dwyer, L., Gill, A., and Seetaram, N., eds. Cheltenham, UK: Edward Elgar, 2012, pp. 227–60.
Premashthira, S., Salman, M.D., Hill, A.E., Reich, R.M., and Wagner, B.A.. “Epidemiological Simulation Modeling and Spatial Analysis for Foot-and-Mouth Disease Control Strategies: A Comprehensive Review.” Animal Health Research Reviews 12,2(2011):225–34.
Reeves, A., Hupalo, R., Patyk, K.A., and Hill, A.E.. User's Guide for the North American Animal Disease Spread Model 4.0. Fort Collins: Colorado State University, 2012. Internet site: http://www.naadsm.org/naadsm/files/documentation/NAADSMUsersGuide-4_0.pdf (Accessed February 10, 2017).
Rich, K.M., Miller, G.Y., and Winter-Nelson, A.. “A Review of Economic Tools for Assessment of Animal Disease Outbreaks.” Revue Scientifique et Technique de l'Office International des Epizooties 24,3(2005):833–45.
Schroeder, T.C., Pendell, D.L., Sanderson, M.W., and McReynolds, S.. “Economic Impact of Alternative FMD Emergency Vaccination Strategies in the Midwestern United States.” Journal of Agricultural and Applied Economics 47,1(2015):4776.
Schroeder, T.C., and Tonsor, G.T.. “International Cattle ID and Traceability: Competitive Implications for the US.” Food Policy 37,1(2012):3140.
Scudamore, J.M. “Origin of the UK Foot and Mouth Disease Epidemic in 2001.” London: Department for Environment, Food and Rural Affairs, June 2002. Internet site: http://www.ecolab.com/expertise-and-innovation/microbial-risks/~/media/229e1f86251e474da055612d15af4b8e.ashx (Accessed May 27, 2015).
Seung, C.-K., and Waters, E.C.. “Measuring the Economic Linkage of Alaska Fisheries: A Supply-Driven Social Accounting Matrix (SDSAM) Approach.” Fisheries Research 97,1–2(2009):1723.
Thompson, D., Muriel, P., Russell, D., Osborne, P., Bromley, A., Rowland, M., Creigh-Tyte, S., and Brown, C.. “Economic Costs of the Foot and Mouth Disease Outbreak in the United Kingdom in 2001.” Revue Scientifique et Technique de l'Office International des Epizooties 21,3(2002):675–87.
Ukkestad, C.M. The Benefits of Animal Traceability Systems on a Foot-and-Mouth Disease Outbreak in Utah. Master's thesis, Department of Applied Economics, Utah State University, Logan, 2014.
U.S. Department of Agriculture (USDA). National Animal Identification System (NAIS) (Draft). Washington, DC: USDA, November 2006. Internet site: http://www.aphis.usda.gov/traceability/downloads/NAIS-UserGuide.pdf (Accessed March 12, 2015).
U.S. Department of Agriculture, Animal and Plant Health Inspection Service. “Traceability for Livestock Moving Interstate.” Federal Register 78,6(2013):2040–75.
U.S. Department of Agriculture, Economic Research Service. “Cattle & Beef.” December 2014. Internet site: http://www.ers.usda.gov/topics/animal-products/cattle-beef/statistics-information.aspx (Accessed March 13, 2015).
U.S. Department of Agriculture, National Agricultural Statistics Service (USDA-NASS), Utah Field Office. Utah Agricultural Statistics and Utah Department of Agriculture and Food 2015 Annual Report. Salt Lake City, UT: USDA-NASS, Utah Field Office, 2015. Internet site: https://www.nass.usda.gov/Statistics_by_State/Utah/Publications/Annual_Statistical_Bulletin/Pdf/ab15/2015%20Agricultural%20Statistics.pdf (Accessed February 2010, 2017).
Ward, R.A., Bailey, D., and Jensen, R.. “An American BSE Crisis: Has It Affected the Value of Traceability and Country-of-Origin Certifications for U.S. and Canadian Beef?International Food and Agribusiness Management Review 8,2(2005):92114.
Watson, P., Wilson, J., Thilmany, D., and Winter, S.. “Determining Economic Contributions and Impacts: What Is the Difference and Why Do We Care?Journal of Regional Analysis & Policy 37,2(2007):115.
Weston A. Price Foundation. “USDA's Final Rule on Animal ID.” Farm-to-Consumer Legal Defense Fund. January 18, 2013. Internet site: http://www.farmtoconsumer.org/news_wp/?p=3862 (Accessed March 12, 2015).

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed