Hostname: page-component-797576ffbb-tx785 Total loading time: 0 Render date: 2023-12-04T02:29:42.175Z Has data issue: false Feature Flags: { "corePageComponentGetUserInfoFromSharedSession": true, "coreDisableEcommerce": false, "useRatesEcommerce": true } hasContentIssue false

Aspects of rumen microbiology central to mechanistic modelling of methane production in cattle

Published online by Cambridge University Press:  26 March 2008

J. L. ELLIS*
Affiliation:
Centre for Nutrition Modelling, Department of Animal and Poultry Science, University of Guelph, Guelph, ON, N1G 2W1, Canada
J. DIJKSTRA
Affiliation:
Animal Nutrition Group, Wageningen Institute of Animal Sciences, Wageningen University, Marijkeweg 40, 6709 PG, Wageningen, The Netherlands
E. KEBREAB
Affiliation:
Department of Animal Science, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
A. BANNINK
Affiliation:
Animal Sciences Group, Division Animal Production, Wageningen University and Research Centre, PO Box 65, 8200 AB Lelystad, The Netherlands
N. E. ODONGO
Affiliation:
Agriculture and Agri-Food Canada, Lethbridge Research Centre, Lethbridge, AB, T1J 4B1, Canada
B. W. McBRIDE
Affiliation:
Centre for Nutrition Modelling, Department of Animal and Poultry Science, University of Guelph, Guelph, ON, N1G 2W1, Canada
J. FRANCE
Affiliation:
Centre for Nutrition Modelling, Department of Animal and Poultry Science, University of Guelph, Guelph, ON, N1G 2W1, Canada
*
*To whom all correspondence should be addressed. Email: jellis@uoguelph.ca

Summary

Methane, in addition to being a significant source of energy loss to the animal that can range from 0·02 to 0·12 of gross energy intake, is one of the major greenhouse gases being targeted for reduction by the Kyoto protocol. Thus, one of the focuses of recent research in animal science has been to develop or improve existing methane prediction models in order to increase overall understanding of the system and to evaluate mitigation strategies for methane reduction. Several dynamic mechanistic models of rumen function have been developed which contain hydrogen gas balance sub-models from which methane production can be predicted. These models predict methane production with varying levels of success and in many cases could benefit from further development. Central to methane prediction is accurate volatile fatty acid prediction, representation of the competition for substrate usage within the rumen, as well as descriptions of protozoal dynamics and pH. Most methane models could also largely benefit from an expanded description of lipid metabolism and hindgut fermentation. The purpose of the current review is to identify key aspects of rumen microbiology that could be incorporated into, or have improved representation within, a model of ruminant digestion and environmental emissions.

Type
Modelling Animal Systems Paper
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abe, M. & Iriki, T. (1989). Mechanism whereby holotrich ciliates are retained in the reticulo-rumen of cattle. British Journal of Nutrition 62, 579587.Google Scholar
Allen, M. S. (1997). Relationship between fermentation acid production in the rumen and the requirement for physically effective fiber. Journal of Dairy Science 80, 14471462.Google Scholar
Allen, M. S. (2000). Effects of diet on short-term regulation of feed intake by lactating dairy cattle. Journal of Dairy Science 83, 15981624.Google Scholar
Alzahal, O., Rustomo, B., Odongo, N. E., Duffield, T. F. & McBride, B. W. (2007 a). Technical note: a system for continuous recording of ruminal pH in cattle. Journal of Animal Science 85, 213217.Google Scholar
Alzahal, O., Kebreab, E., France, J. & McBride, B. W. (2007 b). A mathematical approach to predicting biological values from ruminal pH measurements. Journal of Dairy Science 90, 37773785.Google Scholar
Alzahal, O., Kebreab, E., France, J., Froetschel, M. & McBride, B. W. (2008). Ruminal temperature may aid in the detection of subacute ruminal acidosis. Journal of Dairy Science 91, 202207.Google Scholar
Argyle, J. L. & Baldwin, R. L. (1988). Modelling of rumen water kinetics and effects of rumen pH changes. Journal of Dairy Science 71, 11781188.Google Scholar
Asanuma, N., Iwamoto, M. & Hino, T. (1999). Effect of the addition of fumarate on methane production by ruminal microorganisms in vitro. Journal of Dairy Science 82, 780787.Google Scholar
Baldwin, R. L. (1995). Modeling Ruminant Digestion and Metabolism. London: Chapman & Hall.Google Scholar
Baldwin, R. L., Lucas, H. L. & Cabrera, R. (1970). Energetic relationships in the formation and utilization of fermentation end-products. In Physiology of Digestion and Metabolism in the Ruminant (EdsPhillipson, A. T., Annison, E. F., Armstrong, D. G., Balch, C. C., Comline, R. S., Hardy, R. S., Hobson, P. N. & Keynes, R. D.), pp. 319334. Newcastle: Oriel Press.Google Scholar
Baldwin, R. L., Thornley, J. H. M. & Beever, D. E. (1987). Metabolism of the lactating cow. II. Digestive elements of a mechanistic model. Journal of Dairy Research 54, 107131.Google Scholar
Bannink, A., De Visser, H., Klop, A., Dijkstra, J. & France, J. (1997). Causes of inaccurate prediction of volatile fatty acids by simulation models of rumen function in lactating cows. Journal of Theoretical Biology 189, 353366.Google Scholar
Bannink, A., Kogut, J., Dijkstra, J., France, J., Tamminga, S. & Van Vuuren, A. M. (2000). Modelling production and portal appearance of volatile fatty acids in dairy cows. In Modelling Nutrient Utilization in Farm Animals (EdsMcNamara, J. P., France, J. & Beever, D.), pp. 87102. New York: CABI Publishing.Google Scholar
Bannink, A., Dijkstra, J., Mills, J. A. N., Kebreab, E. & France, J. (2005). Nutritional strategies to reduce enteric methane formation in dairy cows. In Emissions from European Agriculture (EdsKuczynski, T., Dämmgen, U., Webb, J. & Myczko, A.), pp. 367376. Wageningen: Wageningen Academic Publishers.Google Scholar
Bannink, A., Kogut, J., Dijkstra, J., France, J., Kebreab, E., Van Vuuren, A. M. & Tamminga, S. (2006). Estimation of the stoichiometry of volatile fatty acid production in the rumen of lactating cows. Journal of Theoretical Biology 238, 3651.Google Scholar
Bannink, A., France, J., Lopez, S., Gerrits, W. J. J., Kebreab, E., Tamminga, S. & Dijkstra, J. (in press). Modelling the implications of feeding strategy on rumen fermentation and functioning of the rumen wall. Animal Feed Science and Technology, doi: 10.1016/j.anifeedsci.2007.05.002.Google Scholar
Basarab, J. A., Okine, E. K., Baron, V. S., Marx, T., Ramsey, P., Ziegler, K. & Lyle, K. (2005). Methane emissions from enteric fermentation in Alberta's beef cattle population. Canadian Journal of Animal Science 85, 501512.Google Scholar
Beam, T. M., Jenkins, T. C., Moate, P. J., Kohn, R. A. & Palmquist, D. L. (2000). Effects of amount and source of fat on the rates of lipolysis and biohydrogenation of fatty acids in ruminal contents. Journal of Dairy Science 83, 25642573.Google Scholar
Beauchemin, K. A. & McGinn, S. M. (2006). Methane emissions from beef cattle: effects of fumaric acid, essential oil and canola oil. Journal of Animal Science 84, 14891496.Google Scholar
Belyea, R. L., Marin, P. J. & Sedgwick, H. T. (1985). Utilization of chopped and long alfalfa by dairy heifers. Journal of Dairy Science 68, 12971301.Google Scholar
Benchaar, C., Rivest, J., Pomar, C. & Chiquette, J. (1998). Prediction of methane production from dairy cows using existing mechanistic models and regression equations. Journal of Animal Science 76, 617627.Google Scholar
Benchaar, C., Pomar, C. & Chiquette, J. (2001). Evaluation of dietary strategies to reduce methane production in ruminants: a modelling approach. Canadian Journal of Animal Science 81, 563574.Google Scholar
Bird, S. H. & Leng, R. A. (1978). The effects of defaunation of the rumen on the growth of cattle on low-protein high-energy diets. British Journal of Nutrition 40, 163167.Google Scholar
Black, J. L., Beever, D. E., Faichney, G. J., Howarth, B. R. & Graham, N. M. (1981). Simulation of the effects of rumen function on the flow of nutrients from the stomach of sheep: part 1 – description of a computer program. Agricultural Systems 6, 195219.Google Scholar
Boadi, D. A., Wittenberg, K. M. & Kennedy, A. D. (2002). Validation of the sulphur hexafluoride (SF6) tracer gas technique for measurement of methane and carbon dioxide production by cattle. Canadian Journal of Animal Science 82, 125131.Google Scholar
Boadi, D., Benchaar, C., Chiquette, J. & Masse, D. (2004). Mitigation strategies to reduce enteric methane emissions from dairy cows: update review. Canadian Journal of Animal Science 84, 319335.Google Scholar
Boone, D. R., Johnson, R. L. & Liu, Y. (1989). Diffusion of the interspecies electron carriers H2 and formate in methanogenic ecosystems and its implications in the measurement of K m for H2 or formate uptake. Applied Environmental Microbiology 55, 17351741.Google Scholar
Breznak, J. A. & Kane, M. D. (1990). Microbial H2/CO2 acetogenesis in animal guts: nature and nutritional significance. FEMS Microbiology Reviews 87, 309314.Google Scholar
Broderick, G. A. & Merchen, N. R. (1992). Markers for quantifying microbial protein synthesis in the rumen. Journal of Dairy Science 75, 26182632.Google Scholar
Callaway, T. R. & Martin, S. A. (1996). Effects of organic acid and monensin treatment on in vitro mixed ruminal microorganism fermentation of cracked corn. Journal of Animal Science 74, 19821989.Google Scholar
Carro, M. D. & Ranilla, M. J. (2003). Effect of the addition of malate on in vitro rumen fermentation of cereal grains. British Journal of Nutrition 89, 181188.Google Scholar
Chilibroste, P., Dijkstra, J., Robinson, P. H. & Tamminga, S. (in press). A simulation model ‘CTR Dairy’ to predict the supply of nutrients in dairy cows managed under discontinuous feeding patterns. Animal Feed Science and Technology, doi: 10.1016/j.anifeedsci.2007.05.009.Google Scholar
Coppock, C. E., Flatt, W. P. & Moore, L. A. (1964). Effect of hay to grain ratio on utilization of metabolizable energy for milk production by dairy cows. Journal of Dairy Science 47, 13301338.Google Scholar
Czerkawski, J. W. (1986). An Introduction to Rumen Studies. New York: Pergamon Press.Google Scholar
Dado, R. G. & Allen, M. S. (1993). Continuous computer acquisition of feed and water intakes, chewing, reticular motility, and ruminal pH of cattle. Journal of Dairy Science 76, 15891600.Google Scholar
Danfaer, A. (1990). A dynamic model of nutrient digestion and metabolism in lactating dairy cows. Ph.D. thesis, National Institute of Animal Science, Foulum, Denmark.Google Scholar
Dehority, B. A. (2003). Rumen Microbiology. Nottingham: Nottingham University Press.Google Scholar
Demeyer, D. I. & Van Nevel, C. J. (1979). Effect of defaunation on the metabolism of rumen micro-organisms. British Journal of Nutrition 42, 515524.Google Scholar
Demeyer, D. I., Van Nevel, C. J. & Van de Voorde, G. (1982). The effect of defaunation on the growth of lambs fed three urea-containing diets. Archive fur Tieremahrung 32, 595604.Google Scholar
Denman, S. E., Tomkins, N. & McSweeney, C. S. (2005). Monitoring the effect of bromochloromethane on methanogen populations within the rumen using qPCR. In 2nd International Symposium Greenhouse Gases and Animal Agriculture (EdsSoliva, C. R., Takahashi, J. & Kreuzer, M.), pp. 112. Zurich, Switzerland: ETH.Google Scholar
Dijkstra, J. (1994). Simulation of the dynamics of protozoa in the rumen. British Journal of Nutrition 72, 679699.Google Scholar
Dijkstra, J., Neal, H. D. St. C., Beever, D. E. & France, J. (1992). Simulation of nutrient digestion, absorption and outflow in the rumen: model description. Journal of Nutrition 122, 22392256.Google Scholar
Dijkstra, J., France, J., Assis, A. G., Neal, H. D. St. C., Campos, O. F. & Aroeira, L. J. M. (1996). Simulation of digestion in cattle fed sugarcane: prediction of nutrient supply for milk production with locally available supplements. Journal of Agricultural Science, Cambridge 127, 247260.Google Scholar
Dijkstra, J., Gerrits, W. J. J., Bannink, A. & France, J. (2000). Modelling lipid metabolism in the rumen. In Modelling Nutrient Utilization in Farm Animals (EdsMcNamara, J. P., France, J. & Beever, D. E.), pp. 2536. Wallingford: CAB International.Google Scholar
Dijkstra, J., Kebreab, E., France, J. & Bannink, A. (2008). Modelling protozoal metabolism and VFA production in the rumen. In Mathematical Modelling in Animal Nutrition (EdsFrance, J. & Kebreab, E.), pp. 170188. Wallingford: CABI Publishing.Google Scholar
Dohme, F., Machmuller, A., Wasserfallen, A. & Kreuzer, M. (2000). Comparative efficiency of various fats rich in medium-chain fatty acids to suppress ruminal methanogenesis as measured with RUSITEC. Canadian Journal of Animal Science 80, 473482.Google Scholar
Dohme, F., Machmuller, A., Sutter, F. & Kreuzer, M. (2004). Digestive and metabolic utilization of lauric, myristic and stearic acid in cows, and associated effects on milk fat quality. Archives of Animal Nutrition 58, 99116.Google Scholar
Donovan, K. C. & Baldwin, R. L. (1998). Comment on the paper ‘Prediction of methane production from dairy cows using existing mechanistic models and regression equations’. Journal of Animal Science 76, 27512753.Google Scholar
Dong, Y., Bae, H. D., McAllister, T. A., Mathison, G. W. & Cheng, K. J. (1997). Lipid-induced depression of methane production and digestibility in the artificial rumen system (RUSITEC). Canadian Journal of Animal Science 77, 269278.Google Scholar
Doreau, M. & Chilliard, Y. (1997). Digestion and metabolism of dietary fat in farm animals. British Journal of Nutrition 78, S15S35.Google Scholar
Elliott-Martin, R. J., Mottram, T. T., Gardner, J. W., Hobbs, P. J.& Bartlett, P. N. (1997). Preliminary investigation of breath sampling as a monitor of health in dairy cattle. Journal of Agricultural Engineering Research 67, 267275.Google Scholar
Ellis, J. L., Kebreab, E., Odongo, N. E., McBride, B. W., Okine, E. K. & France, J. (2007). Prediction of methane production from dairy and beef cattle. Journal of Dairy Science 90, 34563467.Google Scholar
Eugene, M., Archimede, H. & Sauvant, D. (2004). Quantitative meta-analysis on the effects of defaunation of the rumen on growth, intake and digestion in ruminants. Livestock Production Science 85, 8197.Google Scholar
Finlay, B. J., Esteban, G., Clarke, K. J., Williams, A. G., Embley, T. M. & Hirt, R. P. (1994). Some rumen ciliates have endosymbiotic methanogens. FEMS Microbiology Letters 117, 157162.Google Scholar
Firkins, J. L., Allen, M. A., Oldick, B. S. & St-Pierre, N. R. (1998). Modelling ruminal digestibility of carbohydrates and microbial protein flow to the duodenum. Journal of Dairy Science 81, 33503369.Google Scholar
France, J. & Dijkstra, J. (2005). Volatile fatty acid production. In Quantitative Aspects of Ruminant Digestion and Metabolism (EdsDijkstra, J., Forbes, J. M. & France, J.), pp. 157175. Wallingford: CAB International.Google Scholar
France, J., Thornley, J. H. M. & Beever, D. E. (1982). A mathematical model of the rumen. Journal of Agricultural Science, Cambridge 99, 343353.Google Scholar
France, J., Thornley, J. H. M., Siddons, R. C. & Dhanoa, M. S. (1993). On incorporating diffusion and viscosity concepts into compartmental models for analysing faecal marker excretion patterns in ruminants. British Journal of Nutrition 70, 369378.Google Scholar
Friggens, N. C., Oldham, J. D., Dewhurst, R. J. & Horgan, G. (1998). Proportions of volatile fatty acids in relation to the chemical composition of feeds based on grass silage. Journal of Dairy Science 81, 13311344.Google Scholar
Giger-Reverdin, S., Morand-Fehr, P. & Tran, G. (2003). Literature survey of the influence of dietary fat composition on methane production in dairy cattle. Livestock Production Science 82, 7379.Google Scholar
Gould, D. H. (1998). Polioencephalomalacia. Journal of Animal Science 76, 309314.Google Scholar
Grainger, C., Clarke, T., McGinn, S. M., Auldist, M. J., Beauchemin, K. A., Hannah, M. C., Waghorn, G. C., Clark, H. & Eckard, R. J. (2007). Methane emissions from dairy cows measured using the sulphur hexafluoride (SF6) tracer and chamber techniques. Journal of Dairy Science 90, 27552766.Google Scholar
Grundy, S. M. (1990). Trans monounsaturated fatty acids and serum cholesterol levels. New England Journal of Medicine 323, 480481.Google Scholar
Harfoot, C. G. & Hazlewood, G. P. (1997). Lipid metabolism in the rumen. In The Rumen Microbial Ecosystem, 2nd edn. (EdsHobson, P. N. & Stewart, D. S.), pp. 382426. London: Chapman & Hall.Google Scholar
Henderson, C. (1973). The effects of fatty acids on pure cultures of rumen bacteria. Journal of Agriculture Science, Cambridge 81, 107112.Google Scholar
Hegarty, R. S. (1999). Reducing rumen methane emissions through elimination of rumen protozoa. Australian Journal of Agriculture Research 50, 13211327.Google Scholar
Hegarty, R. S. (2002). Strategies for mitigating methane emissions from livestock – Australian options and opportunities. In Proceedings of the 1st International Conference on Greenhouse Gases and Animal Agriculture (EdsTakahashi, J., Young, B. A., Soliva, C. R. & Kreuzer, M.), pp. 3134. Oxford: Elsevier Health Sciences.Google Scholar
Hegarty, R. & Gerdes, R. (1998). Hydrogen production and transfer in the rumen. Recent Advances in Animal Nutrition 12, 3744.Google Scholar
Hino, T. & Asanuma, N. (2003). Suppression of ruminal methanogesis by decreasing the substrate available to methanogenic bacteria. Nutrition Abstracts and Reviews. Series B: Livestock Feeds and Feeding 73, 1R8R.Google Scholar
Hobson, P. N. & Stewart, C. S. (1997). The Rumen Microbial Ecosystem. London: Chapman & Hall.Google Scholar
Hollowell, C. A. & Wolin, M. J. (1965). Basis of the exclusion of Escherichia coli from the rumen ecosystem. Applied Microbiology 13, 918924.Google Scholar
Hungate, R. E. (1978). The rumen protozoa. In Parasitic Protozoa (Ed Kreir, J. P.), pp. 655695. New York: Academic Press, Inc.Google Scholar
Imamidoost, R. & Cant, J. P. (2005). Non-steady-state modelling of effects of timing and level of concentrate supplementation on ruminal pH and forage intake in high-producing, grazing ewes. Journal of Animal Science 83, 11021115.Google Scholar
Immig, I. (1996). The rumen and hindgut as source of ruminant methanogenesis. Environmental Monitoring and Assessment 42, 5772.Google Scholar
Jenkins, T. C. & McGuire, M. A. (2006). Major advances in nutrition: impact on milk composition. Journal of Dairy Science 89, 13021310.Google Scholar
Johnson, K. A. & Johnson, D. E. (1995). Methane emissions from cattle. Journal of Animal Science 73, 24832492.Google Scholar
Johnson, K. A., Huyler, M., Westberg, H., Lamb, B. & Zimmerman, P. (1994 a). Measurement of methane emissions from ruminant livestock using a SF6 tracer technique. Environmental Science and Technology 28, 359362.Google Scholar
Johnson, K. A., Huyler, M. T., Westberg, H. H., Lamb, B. K. & Zimmerman, P. (1994 b). Measurement of methane emissions from ruminant livestock using a sulphur hexafluoride tracer technique. In Energy Metabolism of Farm Animals EAAP Publication No. 76. (Ed.Aguilera, J. F.) pp. 299313. Granada, Spain: Servicio de Publications, Consejo Superior de Investigaciones Clientificas.Google Scholar
Johnson, K. A., Kincaid, R. L., Westberg, H. H., Gaskins, C. T., Lamb, B. K. & Cronrath, J. D. (2002). The effect of oilseeds in diets of lactating cows on milk production and methane emissions. Journal of Dairy Science 85, 15091515.Google Scholar
Jouany, J.-P. (1996). Effect of rumen protozoa on nitrogen utilization by ruminants. Journal of Nutrition 126, 1335S1346S.Google Scholar
Jouany, J. P., Demeyer, D. I. & Grain, J. (1988). Effect of defaunating the rumen. Animal Feed Science and Technology 21, 229265.Google Scholar
Karnati, S. K. R., Sylvester, J. T., Noftsger, S. M., Yu, Z., St-Pierre, N. R. & Firkins, J. L. (2007). Assessment of ruminal bacterial populations and protozoal generation time in cows fed different methionine sources. Journal of Dairy Science 90, 798809.Google Scholar
Kebreab, E., Mills, J. A. N., Crompton, L. A., Bannink, A., Dijkstra, J., Gerrits, W. J. J. & France, J. (2004). An integrated mathematical model to evaluate nutrient partition in dairy cattle between the animal and its environment. Animal Feed Science and Technology 112, 131154.Google Scholar
Kebreab, E., Clark, K., Wagner-Riddle, C. & France, J. (2006 a). Methane and nitrous oxide emissions from Canadian animal agriculture: a review. Canadian Journal of Animal Science 86, 135158.Google Scholar
Kebreab, E., France, J., McBride, B. W., Odongo, N., Bannink, A., Mills, J. A. N. & Dijkstra, J. (2006 b). Evaluation of models to predict methane emissions from enteric fermentation in North American dairy cattle. In Nutrient Digestion and Utilization in Farm Animals, Modelling Approaches (EdsKebreab, E., Dijkstra, J., Bannink, A., Gerrits, W. J. J. & France, J.), pp. 299313. Wallingford: CABI Publishing.Google Scholar
Kohn, R. A. & Boston, R. C. (2000). The role of thermodynamics in controlling rumen metabolism. In Modelling Nutrient Utilization in Farm Animals (EdsMcNamara, J. P., France, J. & Beever, D.), pp. 1124. Wallingford: CABI Publishing.Google Scholar
Lescoat, P. & Sauvant, D. (1995). Development of a mechanistic model for rumen digestion validated using the duodenal flow of amino acids. Reproduction, Nutrition and Development 35, 4570.Google Scholar
Lin, C., Raskin, L. & Stahl, D. A. (1997). Microbial community structure in gastrointestinal tracts of domestic animals: comparative analysis using rRNA-targeted oligonucleotide probes. FEMS Microbiology Ecology 22, 281294.Google Scholar
Lopez, S., Hovell, F. D. D., Dijkstra, J. & France, J. (2003). Effects of volatile fatty acid supply on their absorption and on water kinetics in the rumen of sheep sustained by intragastric infusions. Journal of Animal Science 81, 26092616.Google Scholar
Machmuller, A. & Kreuzer, M. (1999). Methane suppression by coconut oil and associated effects on nutrient and energy balance in sheep. Canadian Journal of Animal Science 79, 6572.Google Scholar
Mackie, R. I. & Bryant, M. P. (1994). Acetogenesis and the rumen: syntrophic relationships. In Acetogenesis (Ed. Drake, H. L.), pp. 331364. New York: Chapman & Hall.Google Scholar
Maczulak, A. E., Dehority, B. A. & Palmquist, D. L. (1981). Effects of long-chain fatty acids on growth of rumen bacteria. Applied Environmental Microbiology 42, 856862.Google Scholar
Martin, S. A. & Streeter, M. N. (1995). Effect of malate on in vitro mixed ruminal microorganism fermentation. Journal of Animal Science 73, 21412145.Google Scholar
Mathison, G. W., Okine, E. K., McAllister, T. A., Dong, Y., Galbraith, J. & Dmytruk, O. I. N. (1998). Reducing methane emissions from ruminant animals. Journal of Applied Animal Research 14, 128.Google Scholar
Matz, C. & Kjelleberg, S. (2005). Off the hook – how bacteria survive protozoan grazing. Trends in Microbiology 13, 302307.Google Scholar
McGinn, S. M., Beauchemin, K. A., Coates, T. & Colombatto, D. (2004). Methane emissions from beef cattle: effects of monensin, sunflower oil, enzymes, yeast, and fumaric acid. Journal of Animal Science 82, 33463356.Google Scholar
McGinn, S. M., Beauchemin, K. A., Iwaasa, A. D. & McAllister, T. A. (2006) Assessment of the sulphur hexafluoride (SF6) tracer technique for measuring enteric methane emissions from cattle. Journal of Environmental Quality 35, 16861691.Google Scholar
McSweeney, C. S., Denman, S. E., Wright, A.-D. G. & Yu, Z. (2007). Application of recent DNA/RNA-based techniques in rumen ecology. Asian-Australian Journal of Animal Science 20, 283294.Google Scholar
Mills, J. A. N., Dijkstra, J., Bannink, A., Cammell, S. B., Kebreab, E. & France, J. (2001). A mechanistic model of whole-tract digestion and methanogenesis in the lactating dairy cow: model development, evaluation, and application. Journal of Animal Science 79, 15841597.Google Scholar
Moate, P. J., Clarke, T., Davis, L. H. & Laby, R. H. (1997). Rumen gases and bloat in grazing dairy cows. Journal of Agricultural Science, Cambridge 129, 459469.Google Scholar
Moe, P. W. & Tyrrell, H. F. (1979). Methane production in dairy cows. Journal of Dairy Science 62, 15831586.Google Scholar
Moss, A. R., Jouany, J.-P. & Newbold, J. (2000). Methane production by ruminants: its contribution to global warming. Annales de Zootechnie 49, 231253.Google Scholar
Murphy, M. R. (1984). Modeling production of volatile fatty acids in ruminants. In Modeling Ruminant Digestion and Metabolism (EdsBaldwin, R. L. & Bywater, A. C.), pp. 5962. Davis, CA: University of California.Google Scholar
Murphy, M. R., Baldwin, R. L. & Koong, L. J. (1982). Estimation of stoichiometric parameters for rumen fermentation of roughage and concentrate diets. Journal of Dairy Science 55, 411421.Google Scholar
Murray, R. M., Bryant, A. M. & Leng, R. A. (1976). Rates of production of methane in the rumen and large intestines of sheep. British Journal of Nutrition 36, 114.Google Scholar
Nagaraja, T. G., Towne, G. & Beharka, A. A. (1992). Moderation of ruminal fermentation by ciliated protozoa in cattle fed a high-grain diet. Applied Environmental Microbiology 58, 24102414.Google Scholar
Nagaraja, T. G., Newbold, C. J., Van Nevel, C. J. & Demeyer, D. I. (1997). Manipulation of ruminal fermentation. In The Rumen Microbial Ecosystem (EdsHobson, P. N. & Stewart, C. S.), pp. 523632. London: Blackie Academic & Professional.Google Scholar
Nagorka, B. N., Gordon, G. L. R. & Dynes, R. A. (2000). Towards a more accurate representation of fermentation in mathematical models of the rumen. In Modelling Nutrient Utilization in Farm Animals (Eds McNamara, J. P., France, J. & Beever, D. E.), pp. 3748. Wallingford: CAB International.Google Scholar
National Research Council (2001). Nutrient Requirements of Dairy Cattle, 7th revised edn. Washington, DC: National Academy Press.Google Scholar
Newbold, C. J., Lopez, S., Nelson, N., Ouda, J. O., Wallace, R. J. & Moss, A. R. (2005). Propionate precursors and other metabolic intermediates as possible alternative electron acceptors to methanogenesis in ruminal fermentation in vitro. British Journal of Nutrition 94, 2735.Google Scholar
Odongo, N. E., Or-Rashid, M. M., Kebreab, E., France, J. & McBride, B. W. (2007). Effect of supplementing myristic acid in dairy cow rations on ruminal methanogenesis and fatty acid profile in milk. Journal of Dairy Science 90, 18511858.Google Scholar
Okine, E. K., Mathison, G. W. & Hardin, R. T. (1989). Effects of changes in frequency of reticular contractions on fluid and particulate passage rates in cattle. Journal of Animal Science 67, 33883396.Google Scholar
Parodi, P. W. (1997). Cows' milk fat components as potential anticarcinogenic agents. Journal of Nutrition 127, 10551060.Google Scholar
Pinares-Patiño, C. S., Holmes, C. W., Lassey, K. R. & Ulyatt, M. J. (2008). Measurement of methane emission from sheep by the sulphur hexafluoride tracer technique and by the calorimetric chamber: failure and success. Animal 2, 141148.Google Scholar
Pitt, R. E., Van Kessel, J. S., Fox, D. G., Pell, A. N., Barry, M. C. & Van Soest, P. J. (1996). Prediction of ruminal volatile fatty acids and pH within the net carbohydrate and protein system. Journal of Animal Science 74, 226244.Google Scholar
Po, H. N. & Senozan, N. M. (2001). Henderson-Hasselbalch equation: its history and limitations. Journal of Chemical Education 78, 14991503.Google Scholar
Prins, R. A., Van Nevel, C. J. & Demeyer, D. I. (1972). Pure culture studies of inhibitors for methanogenic bacteria. Antonie Van Leeuwenhoek 38, 281287.Google Scholar
Reichl, J. R. & Baldwin, R. L. (1975). Rumen modelling: rumen input-output balance models. Journal of Dairy Science 58, 879890.Google Scholar
Russell, J. B. (1991). Intracellular pH of acid-tolerant ruminal bacteria. Applied Environmental Microbiology 57, 33833384.Google Scholar
Russell, J. B. (1992). Another explanation for the toxicity of fermentation acids at low pH: anion accumulation versus uncoupling. Journal of Applied Bacteriology 73, 363370.Google Scholar
Russell, J. B. (1998). The importance of pH in the regulation of ruminal acetate to propionate ratio and methane production in vitro. Journal of Dairy Science 81, 32223230.Google Scholar
Russell, J. B. & Jeraci, J. L. (1984). Effect of carbon monoxide on fermentation of fiber, starch, and amino acids by mixed rumen microorganisms in vitro. Applied Environmental Microbiology 48, 211217.Google Scholar
Schauer, N. L. & Ferry, J. G. (1980). Metabolism of formate in Methanobacerium formicicum. Journal of Bacteriology 142, 800807.Google Scholar
Schink, B. & Zeikus, J. G. (1980). Microbial methanol formation: a major end product of pectin metabolism. Current Microbiology 4, 387389.Google Scholar
Shabi, Z., Bruckental, I., Zamwell, S., Tagari, H. & Arieli, A. (1999). Effects of extrusion of grain and feeding frequency on rumen fermentation, nutrient digestibility, and milk yield and composition in dairy cows. Journal of Dairy Science 82, 12521260.Google Scholar
Steinfeld, H., Gerber, P., Wassenaar, T., Castel, V., Rosales, M. & De Haan, C. (2006). Livestock's Long Shadow. Environmental Issues and Options. Rome: Food and Agriculture Organization of the United Nations (FAO).Google Scholar
Sutton, J. D., Hart, I. C., Broster, W. H., Elliott, R. J. & Schuller, E. (1986). Feeding frequency for lactating dairy cows: effects of rumen fermentation and blood metabolites and hormones. British Journal of Nutrition 56, 181192.Google Scholar
Sveinbjörnsson, J., Huhtanen, P. & Udén, P. (2006). The Nordic dairy cow model Karoline – development of VFA sub-model. In Nutrient Digestion and Utilization in Farm Animals (Eds Kebreab, E., Dijkstra, J., Bannink, A., Gerrits, W. J. J. & France, J.), pp. 114. Wallingford: CABI Publishing.Google Scholar
Sylvester, J. T., Karnati, S. K. R., Yu, Z., Morrison, M. & Firkins, J. L. (2004). Development of an assay to quantify rumen ciliate protozoal biomass in cows using real-time PCR. Journal of Nutrition 134, 33783384.Google Scholar
Thornley, J. H. M. & France, J. (2007). Mathematical models in agriculture, 2nd edn.Wallingford: CABI Publishing.Google Scholar
Tokura, M., Ushida, K., Miyazaki, K. & Kojima, Y. (1997). Methanogens associated with rumen ciliates. FEMS Microbiology Ecology 22, 137143.Google Scholar
Torrent, J. & Johnson, D. E. (1994). Methane production in the large intestine of sheep. In Energy Metabolism of Farm Animals EAAP Publication No. 76 (Ed.Aquilera, J. F), pp. 391394. Granada, Spain: CSIC Publishing Services.Google Scholar
UNFCCC (2007). Kyoto Protocol. Available Online at http://unfccc.int/kyoto_protocol/items/2830.php (verified 28/01/08).Google Scholar
Ungerfeld, E. M. & Kohn, R. A. (2006). The role of thermodynamics in the control of ruminal fermentation. In Ruminant Physiology: Digestion, Metabolism and Impact of Nutrition on Gene Expression, Immunology and Stress (Eds Sejrsen, K., Hvelplund, T. & Nielsen, M. O.), pp. 5585. Wageningen, The Netherlands: Wageningen Academic Publishers.Google Scholar
Ungerfeld, E. M., Rust, S. R., Burnett, R. J., Yokoyama, M. T. & Wang, J. K. (2005). Effects of two lipids on in vitro ruminal methane production. Animal Feed Science and Technology 119, 179185.Google Scholar
Ushida, K., Newbold, C. J. & Jouany, J.-P. (1997). Interspecies hydrogen transfer between the rumen ciliate Polyplastron multivesiculatum and Methanosarcina barkeri. Journal of General and Applied Microbiology 43, 129131.Google Scholar
Van Kessel, J. A. S. & Russell, J. B. (1996). The effect of pH on ruminal methanogenesis. FEMS Microbiology Letters 20, 205210.Google Scholar
Van Knegsel, A. T. M., Van Den Brand, H., Dijkstra, J., Tamminga, S. & Kemp, B. (2005). Effect of dietary energy source on energy balance, production, metabolic disorders and reproduction in lactating dairy cattle. Reproduction, Nutrition, Development 45, 665688.Google Scholar
Van Nevel, C. J. & Demeyer, D. I. (1996). Control of rumen methanogenesis. Environmental Monitoring and Assessment 42, 7397.Google Scholar
Veira, D. M. (1986). The role of ciliate protozoa in nutrition of the ruminant. Journal of Animal Science 63, 15471560.Google Scholar
Wallace, R. J., Wood, T. A., Rowe, A., Price, J., Yanez, D. R., Williams, S. P. & Newbold, C. J. (2006). Encapsulated fumaric acid as a means of decreasing ruminal methane emissions. In Greenhouse Gases and Animal Agriculture: An Update. Proceedings of the 2nd International Conference on Greenhouse Gases and Animal Agriculture, Zurich, Switzerland, 20–24 September 2005, pp. 148151.Google Scholar
Warren, S., Andresen, D., Nagl, L., Schoenig, S., Krishnamurthi, B., Erickson, H., Hildreth, T., Poole, D. & Spire, M. (2004). Wearable and wireless: distributed, sensor-based telemonitoring systems for state of health determination in cattle. In 9th Annual Talbot Symposium on Computers and Veterinary Informatics, Philadelphia, 25 July 2004. AVMA 2004 Convention Notes.Google Scholar
Whitford, M. F., Teather, R. M., & Forster, R. J. (2001). Phylogenetic analysis of methanogens from the bovine rumen. BMC Microbiology 1, 5.Google Scholar
Widdel, F. (1986). Growth of methanogenic bacteria in pure culture with 2-propanol and other alcohols as hydrogen donors. Applied Environmental Microbiology 51, 10561062.Google Scholar
Williams, A. G. & Coleman, G. S. (1988). The rumen protozoa. In The Rumen Microbial Ecosystem (Ed.Hobson, P. N.), pp. 77128. New York: Elsevier Applied Science.Google Scholar
Williams, A. G. & Coleman, G. S. (1997). The rumen protozoa. In The Rumen Microbial Ecosystem 2nd edn. (Eds Hobson, P. N. & Stewart, C. S.), pp. 73139. London: Blackie Academic and Professional.Google Scholar
Wolin, M. J. (1975). Interactions between the bacterial species of the rumen. In Digestion and Metabolism in the Ruminant (Eds McDonald, I. W. & Warner, A. C. I.), pp. 134148. Armidale: The University of New England Publishing Unit.Google Scholar
Wright, A. D. G., Kennedy, P., O'neill, C. J., Toovey, A. F., Popovski, S., Rea, S. M., Pimm, C. L. & Klein, L. (2004). Reducing methane emissions in sheep by immunization against rumen methanogens. Vaccine 22, 39763985.Google Scholar
Zellner, G. & Winter, J. (1987). Secondary alcohols as hydrogen donors for CO2-reduction by methanogens. FEMS Microbiology Letters 44, 323328.Google Scholar
Zinder, S. H. (1993). Physiological ecology of methanogens. In Methanogens, Ecology, Physiology, Biochemistry and Genetics (Ed.Ferry, J. G.), pp. 128206. New York: Chapman & Hall.Google Scholar