Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-12-06T16:35:27.210Z Has data issue: false hasContentIssue false

The effect of time of harvest on the yield components of poppies (Papaver somniferum L.)

Published online by Cambridge University Press:  27 March 2009

J. C. Laughlin
Affiliation:
Department of Agriculture, Devonport, Tasmania 7310, Australia

Summary

In a field experiment in the north-west region of Tasmania, poppies (Papaver somniferum L.) were harvested at weekly intervals beginning 10 days after full bloom and continuing until 4 weeks after the dry commercial harvest stage. At each harvest the plants were cut off at ground level and partitioned into terminal capsules, lateral capsules, seed and the combined stem plus leaf component.

The dry-matter yield of total plant and of all the components except seed achieved maximum values 2–3 weeks after full bloom and then progressively declined. For the total plant this decrease between maximum dry weight and that at the time of commercial harvest (8 weeks after full bloom) amounted to 26% while for terminal capsules it was 37% for lateral capsules 15% and for stem plus leaves 39%. In contrast, the dry-matter yield of total seed rose to a maximum by 4 weeks after full bloom and then remained constant for the duration of the experiment.

The morphine concentration of both terminal and lateral capsules reached a maximum value of 1·1% 6 weeks after full bloom and then decreased by about 10% at the dry harvest stage. The morphine concentration of stem and leaves also reached a maximum of 0·1% about the same time as capsules but decreased rapidly and had halved by dry commercial harvest. The mutually compensating factors of decreasing dry-matter yield and increasing morphine concentration gave similar total plant morphine yields at any time of harvest from 2 to 7 weeks after full bloom. The morphine extracted from the whole plant at these times of harvest was about 50% greater than that derived from capsules alone at the time of dry commercial harvest.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1980

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Allen, E. J., Morgan, D. G. & Ridgman, W. J. (1971). A physiological analysis of the growth of oilseed rape. Journal of Agricultural Science, Cambridge 77, 339341.CrossRefGoogle Scholar
Bartlett, M. S. (1937a). Properties of sufficiency and statistical tests. Proceedings of the Royal Society A 160, 268282.Google Scholar
Bartlett, M. S. (1937b). Some examples of statistical methods of research in agriculture and appliedbiology. Journal of the Royal Statistical Society, Supplement 4, 137183.Google Scholar
Box, G. E. P. (1950). Problems in the analysis of growth and wear curves. Biometrics 6, 362389.CrossRefGoogle ScholarPubMed
Bunting, E. S. (1956). An agronomic study of Papaver somniferum L. Doctor of Philosophy thesis, University of London.Google Scholar
Bunting, E. S. (1963). Changes in the capsule of Papaver somniferum between flowering and maturity. Annals of Applied Biology 51, 459471.CrossRefGoogle Scholar
Duncan, W. G. (1975). Maize. In Crop Physiology – Some Case Histories (ed. Evans, L. T.), pp. 2350Cambridge University Press.Google Scholar
Fairbairn, J. W. & El Masry, S. (1968). The alkaloids of Papaver somniferum L. VI. Bound morphine and seed development. Phytochemistry 7, 181187.CrossRefGoogle Scholar
Grove, M. D., Spencer, G. F., Wakeman, M. V. & Tookey, H. L. (1976). Morphine and codeine in poppy seed. Journal of Agricultural and Food Chemistry, 24 (4), 896897.CrossRefGoogle ScholarPubMed
Heeger, E. F. & Schröder, H. (1959). Untersuchungen iiber die Morphinerträge bei Papaver somniferum L. unter mitteldeutschen Anbauverhältnissen Pharmazie 14, 228233.Google Scholar
Hotin, A. A. & Segal, G. M. (1968). Desiccation of oil poppy Trudy Vsesoyuznyi Nauchno – Issledovatel, skii Institut Lekarstv Rastenii 13, 185–192. In Horticultural Abstracts 40, no. 1918.Google Scholar
Hume, D. J. & Campbell, D. K. (1972). Accumulation and translocation of soluble solids in corn stalks. Canadian Journal of Plant Science 52, 363368.CrossRefGoogle Scholar
Inanaga, S. & Kumura, A. (1974). Studies on dry matter production of the rape plant (Brassica napus L.). I. Changes with growth in rates of photosynthesis and respiration of a rape population. Proceedings of the Crop Society of Japan 43 (2), 261266.CrossRefGoogle Scholar
Kleinschmidt, C. & Mothes, K. (1958). Zur Züchtung eines Arzneimohns (Papaver somniferum). Pharmazie 13, 357360.Google ScholarPubMed
Kopp, E. (1957). Versuche zur Züchtung einor morphinreichen Mohnsorte. Pharmazie 12, 614620.Google Scholar
Loftus Hills, K. (1945). Changes in morphine and dry matter content of opium poppy during maturation. Journal of the Council of Scientific and Industrial Research, Australia 18, 286297.Google Scholar
Miczulska, L. (1967). Investigations on the effect of infestation of poppy (Papaver somniferum L.) with parasitic fungi on the content of morphine in the poppy heads. Roczniki Nauk Rolniczych 93 (A-l), 189195 (Polish with English and Russian summaries).Google Scholar
Miram, R. & Pfeifer, S. (1959). Über die Veränderungen Alkolsidhaushalt der Mohnpflanze wahrend einer Vegetationsperiode. Scientia Pharmaceutica 27, 3438.Google Scholar
Murata, Y. & Matsushima, S. (1975). Rice. In Crop Physiology – Some Case Histories (ed. Evans, L. T.), pp. 7399. Cambridge University Press.Google Scholar
Nikonov, G. K. (1958). Accumulation of the main alkaloids in the opium poppy in the course of its ontogenesis. United Nations Bulletin on Narcotics 10 (1), 2024.Google Scholar
Pfeifer, S. & Heydenreich, K. (1962). Die Akkumulation dor Mohnalkaloide zwischen Blüto und biologischer Reife. Ein Beitrag zum Problem Gewinnung von Alkaloiden aus Grunmohn. Pharmazie 17, 107114.Google Scholar
Poethke, W. & Arnold, E. (1951). Untersuchungen über den Morphingehalt der Mohnpflanze. Pharmazie 6, 406410.Google Scholar
Pride, R. & Stern, E. S. (1954). A specific method for the determination of moiphine. Journal of Pharmacy and Pharmacology 6, 590600.CrossRefGoogle Scholar
Prokofiev, A. A. & Godneva, M. T. (1957). Significance of photosynthetic activity of opium poppy fruits for development of seeds and fat accumulation in them. Dokladȳ Akademiya Nauk SSSR 114, (1/6), 99102 (In Russian).Google Scholar
Prokofiev, A. A. & Kats, K. M. (1961). Transpiration of fruit of oil bearing plants. Dokladȳ Akademiya Nauk SSSR 139, 744747 (In Russian).Google Scholar
Prokofiev, A. A. & Kholodova, V. P. (1968). Changes in water content of ripening seeds. Fiziologiya Na Rasteniyata 15 (6), 10221031 (in Russian with English summary).Google Scholar
Römisch, H. (1958). Morphin aus Grunmohn. Beitrag zur Moglichkeit seiner Gewinnung. Pharmazie 13, 769777.Google Scholar
Schröder, H. (1965). Untersuchungen über Veränderungen des Morphingehalts reifender Mohnkapseln. Pharmazie 20, 169171.Google Scholar
Wegner, E. (1951). Die Morphinverteilung in der Mohnpflanze und ihre Veränderung in Lange der Vegetationsperiode als Beitrag zur Physiologie dieses Alkaloides. Pharmazie 6, 420425.Google Scholar