Hostname: page-component-68c7f8b79f-lqrcg Total loading time: 0 Render date: 2025-12-17T07:29:47.192Z Has data issue: false hasContentIssue false

Fermentative characteristics, losses and nutritive value of cactus pear varieties silages containing levels of Leucaena hay

Published online by Cambridge University Press:  06 November 2025

Roberto Sobral Felix
Affiliation:
Department of Animal Science, Federal Rural University of Pernambuco (UFRPE), Recife, Pernambuco, Brazil
Valdson José da Silva*
Affiliation:
Department of Animal Science, Federal Rural University of Pernambuco (UFRPE), Recife, Pernambuco, Brazil
Alexandre Carneiro Leão Mello
Affiliation:
Department of Animal Science, Federal Rural University of Pernambuco (UFRPE), Recife, Pernambuco, Brazil
Djalma Cordeiro Santos
Affiliation:
Agronomic Institute of Pernambuco (IPA), Arcoverde, Pernambuco, Brazil
Jorge Vinícius Fernandes Lima Cavalcanti
Affiliation:
Department of Chemical Engineering, Federal University of Pernambuco, Recife, Pernambuco, Brazil
Márcio Vieira da Cunha
Affiliation:
Department of Animal Science, Federal Rural University of Pernambuco (UFRPE), Recife, Pernambuco, Brazil
Mércia Virginia Ferreira dos Santos
Affiliation:
Department of Animal Science, Federal Rural University of Pernambuco (UFRPE), Recife, Pernambuco, Brazil
Jose Carlos Batista Dubeux Júnior
Affiliation:
North Florida Research and Education Center, University of Florida, Marianna, FL, EUA
*
Corresponding author: Valdson José da Silva; Email: valdson.silva@ufrpe.br

Abstract

The objective of the study was to evaluate the fermentation characteristics, losses, aerobic stability and nutritive value of the silage of three cultivars of cactus pear {‘Orelha de Elefante Mexicana’ – OEM (Opuntia sp.), ‘IPA Sertânia’ and ‘Miúda’ [Nopalea cochenillifera (L.) Salm Dyck.]} mixed with three levels of inclusion of Leucaena [Leucaena leucocephala (Lam.) de Wit] hay (0, 15 and 30%). The design was completely randomized in a 3 × 3 factorial arrangement, corresponding to cactus pear varieties and Leucaena hay levels, with four replications. Gas and effluent losses, pH, organic acids, aerobic stability and nutritional value of silages were evaluated. The silages of the cultivar OEM without the inclusion of Leucaena hay had a higher pH (4.95) compared to Miúda (4.11) and IPA Sertânia (4.17). The aerobic stability was maintained for more than 60h after opening the silos. The inclusion of Leucaena hay (up to 30%) increased the pH and reduced losses by effluents without compromising the fermentative characteristics of the silages, indicated by the predominance of lactic acid (93 g/kg).

Information

Type
Silage Research Paper
Copyright
© The Author(s), 2025 Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Andrade, IVO, Pires, AJV, Carvalho, GGPD, Veloso, CM and Bonomo, P (2010) Perdas, características fermentativas e valor nutritivo da silagem de capim-elefante contendo subprodutos agrícolas. Revista Brasileira de Zootecnia 39, 25782588.Google Scholar
Arriola, KG, Oliveira, AS, Zhengxin, XM, Lean, IJ, Giurcanu, MC and Adesogan, AT (2017) A meta-analysis on the effect of dietary application of exogenous fibrolytic enzymes on the performance of dairy cows. Journal of Dairy Science 100, 45134527. Google Scholar
Arriola, KG, Queiroz, OC, Romero, JJ, Casper, D, Muniz, E, Hamie, J and Adesogan, AT (2015) Effect of microbial inoculants on the quality and aerobic stability of bermudagrass round-bale haylage. Journal of Dairy Science 98, 478485. https://doi.org/10.3168/jds.2014-8411.Google Scholar
Ávila, CLDS, Pinto, JC, Figueiredo, HCP, Morais, ARD, Pereira, OG and Schwan, RF (2009) Estabilidade aeróbia de silagens de capim-mombaça tratadas com Lactobacillus buchneri. Revista Brasileira de Zootecnia 38, 779787.Google Scholar
Bezerra Neto, E, Barreto, LP (2011) Métodos Para Análise Química em Plantas. Recife: Imprensa Universitária da UFRPE. Available at http://editora.ufrpe.br/node/18 (accessed 08 May 2022).Google Scholar
Bolsen, KK, Lin, C, Brent, BE, Feyerherm, AM, Urban, JE and Aimutis, WR (1992) Effect of silage additives on the microbial succession and fermentation process of alfalfa and corn silages. Journal of Dairy Science 75, 30663083.Google Scholar
Borreani, G, Tabacco, E, Schmidt, RJ, Holmes, BJ and Muck, RE (2018) Silage review: factors affecting dry matter and quality losses in silages. Journal of Dairy Science 101, 39523979.Google Scholar
Brito, GSM, Santos, EM, de Araújo, GGL, de Oliveira, JS, Zanine, ADM, Perazzo, AF and Cavalcanti, HS (2020) Mixed silages of cactus pear and gliricidia: chemical composition, fermentation characteristics, microbial population and aerobic stability. Scientific Reports 10, 113.Google Scholar
Caregnato, NE, Menezes, LFGD, Paula, FLMD, Farias, JDA, Carneiro, F and Baraviera, JHI (2019) Fermentação e composição bromatológica da silagem de cana-de-açúcar inoculada com Lactobacillus buchneri, associada ou não à adição de fontes de carboidratos. Ciência Animal Brasileira 20, e-50390.Google Scholar
Carvalho, BF, Ávila, CLS, Miguel, MGCP, Pinto, JC, Santos, MC and Schwan, RF (2015) Aerobic stability of sugar-cane silage inoculated with tropical strains of lactic acid bacteria. Grass and Forage Science 70, 308323.Google Scholar
Charley, B and Schmidt, RJ (2014) Use Your Senses to Evaluate Silage. Available at https://www.agproud.com/articles/33917-use-your-senses-to-evaluate-silage (accessed 22 November 2019).Google Scholar
Costa, RF, Pires, DADA, Moura, MMA, Sales, ECJD, Rodrigues, JAS and Rigueira, JPS (2016) Agronomic characteristics of sorghum cultivars and nutritional values of silage. Acta Scientiarum. Animal Sciences 38, 127133.Google Scholar
Cunha, DS, Rodrigues, JMCS, Costa, CJP, Lima, RS, Araújo, CA, Oliveira, GF, Campos, FS, Magalhães, ALR, Araújo, GGL and Gois, GC (2022) Mineral profile, carbohydrates fractionation, nitrogen compounds and in vitro gas production of elephant grass silages associated with cactus pear. Bulletin of the National Research Centre 46, 257.Google Scholar
Detmann, E. Silva, LFC, Rocha, GC, Palma, MNN and Rodrigues, JPP (2021) Métodos para análise de alimentos. Visconde do Rio Branco-MG: Suprema, 350.Google Scholar
Dubeux, JCB Jr, dos Santos, MVF, da Cunha, MV, dos Santos, DC, de Almeida Souza, RT, de Mello, ACL and de Souza, TC (2021) Cactus (Opuntia and Nopalea) nutritive value: a review. Animal Feed Science and Technology 275, 114890.Google Scholar
Dubeux, JCB, Santos, MVF, Souza, RTA and Siebert, A (2022) Cactus: the new green revolution in drylands. Acta Horticulture 1343, 233240.Google Scholar
Dubeux Júnior, JCB, Araújo Filho, JT, Santos, MVF, Lira, MA, Santos, DC and Pessoa, RAS (2013). Potential of cactus pear in South America. Cactusnet Newsletter 13, 2940.Google Scholar
Galvão Júnior, JGB, da Silva, JBA, Morais, JHG and de Lima, RN (2014). Palma forrageira na alimentação de ruminantes: cultivo e utilização. Acta Veterinaria Brasilica, 8 (2), 7885.Google Scholar
Gama, MA, de Paula, TA, Véras, AS, Guido, SI, Borges, CA, Antoniassi, R, … and Ferreira, MDA (2021) Partially replacing sorghum silage with cactus (Opuntia stricta) cladodes in a soybean oil-supplemented diet markedly increases trans-11 18: 1, cis-9, trans-11 CLA and 18: 2 n-6 contents in cow milk. Journal of Animal Physiology and Animal Nutrition 105, 232246.Google Scholar
Garcia, CV, Mello, ACL, Cunha, MV, Silva, MC, Santos, DC, Santos, MVF, Dubeux, JC and Homem, BGC (2021) Agronomic characteristics and nutritional value of cactus pear progenies. Agronomy Journal 113, 47214735.Google Scholar
Guim, A and Clemente, JVF (2019) Fatores que determinam a qualidade de silagens e fenos. In: I Simpósio Paraibano de Conservação de Forragem Forragens: tecnologias e inovações para a pecuária nordestina, Anais – CCA/UFPB. Areia – PB. Available at www.even3.com.br/anais/SICONFOR/199338-FATORES-QUE-DETERMINAM-A-QUALIDADE-DE-SILAG (accessed 15 September 2019).Google Scholar
Gusha, J, Katsande, S, Zvinorova, PI and Ncube, S (2013) The nutritional composition and acceptability of cacti (Opuntia ficus indica)-legume mixed silage. Online Journal of Animal and Feed Research 3, 116120.Google Scholar
Horwitz, W, Latimer, GW (2005) Official methods: 967.03 (dry matter), 942.05 (organic matter), 973.18 (lignin), 954.01 (crude protein). In Official Methods of Analysis of AOAC International. 18th Edn. Gaithersburg, MD: AOAC Google Scholar
Instituto Nacional de Meteorologia (INMET) (2019) Available at http://www.inmet.gov.br (accessed 13 August 2019).Google Scholar
Kung, L Jr, Ranjit, NK (2001) The effect of Lactobacillus buchneri and other additives on the fermentation and aerobic stability of barley silage. Journal of Dairy Science 84, 11491155.Google Scholar
Kung, L Jr, Robinson, JR, Ranjit, NK, Chen, JH, Golt, CM and Pesek, JD (2000) Microbial populations, fermentation end-products, and aerobic stability of corn silage treated with ammonia or a propionic acid-based preaservative. Journal of Dairy science 83, 14791486.Google Scholar
Kung, L Jr, Schmidt, RJ, Ebling, TE and Hu, W (2007) The effect of Lactobacillus buchneri on the fermentation and aerobic stability of ground and whole high-moisture corn. Journal of Dairy Science 90, 23092314.Google Scholar
Kung, L Jr, Shaver, RD, Grant, RJ and Schmidt, RJ (2018). Silage review: interpretation of chemical, microbial, and organoleptic components of silages. Journal of Dairy Science 101, 40204033 Google Scholar
Littell, RC, Stroup, WW, Milliken, GA, Wolfinger, RD and Schabenberger, O (2006) SAS for Mixed Models. 2nd Edn. Cary: SAS Institute.Google Scholar
Luna-Zapién, EA, Zegbe, JA, Meza-Velázquez, JA, Contreras-Esquivel, JC and Morales-Martínez, TK (2023). Mucilage yield, composition, and physicochemical properties of cultivated cactus pear varieties as influenced by irrigation. Agronomy 13, 419.Google Scholar
Macêdo, AJSE and Santos, EM (2019) Princípios básicos para produção de silagem. Arquivos de Ciências Veterinária e Zoologia UNIPAR 22, 147156.Google Scholar
Matias, AGS, Araújo, GGL, Campos, FS, Moraes, SA, Gois, GC, Silva, TS, … and Voltolini, TV (2020) Fermentation profile and nutritional quality of silages composed of cactus pear and maniçoba for goat feeding. The Journal of Agricultural Science 158, 304312.Google Scholar
Monrroy, M, García, E, Ríos, K, and García, JR (2017). Extraction and physicochemical characterization of mucilage from Opuntia cochenillifera (L.) Miller. Journal of Chemistry 2017, 430190.Google Scholar
Nogueira, MDS, Araújo, GGL, Santos, EM, Gonzaga Neto, S, Oliveira, JS, Perazzo, AF, … and Pereira, DM (2019) Feed alternatives with cactus forage silage for animal nutrition. International Journal of Agriculture and Biology 22, 13931398.Google Scholar
Ogunade, IM, Kim, DH, Jiang, Y, Weinberg, ZG, Jeong, KC and Adesogan, AT (2016) Control of Escherichia coli O157: H7 in contaminated alfalfa silage: effects of silage additives. Journal of Dairy Science 99, 44274436.Google Scholar
Okoye, CO, Wang, Y, Gao, L, Wu, Y, Li, X, Sun, J and Jiang, J. (2023). The performance of lactic acid bacteria in silage production: a review of modern biotechnology for silage improvement. Microbiological Research 266, 127212.Google Scholar
Pereira, DM, Santos, EM, Oliveira, JS, Santos, FNS, Lopes, RC, Santos, MAC, … and Júnior, PT (2021) Effect of cactus pear as a moistening additive in the production of rehydrated corn grain silage. The Journal of Agricultural Science 159, 731742.Google Scholar
Pereira, GA, Santos, EM, Araújo, GGL, Oliveira, JS, Pinho, RMA, Zanine, ADM, … and Nascimento, TVC (2019) Isolation and identification of lactic acid bacteria in fresh plants and in silage from Opuntia and their effects on the fermentation and aerobic stability of silage. The Journal of Agricultural Science 157, 684692.Google Scholar
Rabelo, CHS, Rezende, AVD, Rabelo, FHS, Nogueira, DA, Senedese, SS, Vieira, PDF and Carvalho, A (2014) Silagens de milho inoculadas microbiologicamente em diferentes estádios de maturidade: perdas fermentativas, composição bromatológica e digestibilidade in vitro. Ciência Rural 44, 368373.Google Scholar
Ribeiro, EMO, Silva, NH, Lima Filho, JL, Brito, JZ and Silva, MPC (2010). Study of carbohydrates present in the cladodes of Opuntia ficus-indica (fodder palm), according to age and season. Ciência e Tecnologia dos Alimentos 30, 933939 Google Scholar
Rocha Filho, RR, Santos, DC, Véras, ASC, Siqueira, MCB, Novaes, LP, Mora-Luna, R, … and Ferreira, MA (2021) Can spineless forage cactus be the queen of forage crops in dryland areas?. Journal of Arid Environments 186, 104426.Google Scholar
Rodrigues, AM, Pitacas, FI, Reis, CMG and Blasco, M (2016). Nutritional value of Opuntia ficus-indica cladodes from Portuguese ecotypes. Bulgarian Journal of Agricultural Sciences 22, 4045.Google Scholar
Rodrigues, PHM, Lobo, JR, Silva, EJAD, Borges, LFO, Meyer, PM and Demarchi, JJAD A (2007). Efeito da inclusão de polpa cítrica peletizada na confecção de silagem de capim-elefante (Pennisetum purpureum, Schum.). Revista Brasileira de Zootecnia 36, 17511760.Google Scholar
Rutenberg, R, Granit, R, Chen, Y, Poverenov, E and Weinberg, ZG (2016) Encapsulated propionic acid as a silage additive. Israel Journal of Plant Sciences 63, 5863.Google Scholar
Santos, DC, Farias, I, Lira, MDeA, Santos, MVF, Arruda, GP, Coelho, RSB, Dias, FM and Melo, JN (2006). Manejo e utilização da palma forrageira (Opuntia e Nopalea) em Pernambuco. Recife: IPA, 48. (IPA. Documentos, 30).Google Scholar
Santos, FNS, Santos, EM, Oliveira, JS, Medeiros, GR, Zanine, AM, Araújo, GGL and Oliveira, CJB (2020) Fermentation profile, microbial populations, taxonomic diversity and aerobic stability of total mixed ration silages based on Cactus and Gliricidia. The Journal of Agricultural Science 158, 396405.Google Scholar
Santos, MVF, Lira, MA, Farias, I, Burity, HA and Filho, TJJ (1992) Efeito do período de armazenamento pós-colheita sobre o teor de matéria seca e composição química das palmas forrageiras. Pesquisa Agropecuária Brasileira 27, 777783.Google Scholar
Sepúlveda, ESCAE, Sáenz, C, Aliaga, E and Aceituno, C (2007) Extraction and characterization of mucilage in Opuntia spp. Journal of Arid Environments 68, 534545.Google Scholar
Silva, DJ, Queiroz, AC (2002) Análise de alimentos: métodos químicos e biológicos. Viçosa, MG: Editora UFV, p. 235.Google Scholar
Silva, TS, de Araujo, GGL, Santos, EM, de Oliveira, JS, Campos, FS, Godoi, PFA, … and Turco, SHN (2021) Water intake and ingestive behavior of sheep fed diets based on silages of cactus pear and tropical forages. Tropical Animal Health and Production 53, 17.Google Scholar
Siqueira, GR, Reis, RA, Iturrino, RPS, Pires, AJV, Bernardes, TF and Amaral, RC (2007) Perdas de silagens de cana-de-açúcar tratadas com aditivos químicos e Bacterianos. Revista Brasileira de Zootecnia 36, 20002009.Google Scholar
Tibebu, M, Ashenafi, M, Adugna, T and Geert, G (2018) Evaluation of sensory silage quality, chemical composition and in vitro digestibility of tef (Eragrostis tef) straw inoculated with Effective Microorganisms (EM) at different application rates and ensiled for different durations. Greener Journal of Agricultural Sciences 8, 286293.Google Scholar
Van Soest, PJ (1994) Nutritional Ecology of the Ruminant, 2ª Edn., Ithaca: Cornell University Press, p. 476.Google Scholar
Vasconcelos, AGV, Lira, MA, Cavalcanti, VLB, Santos, MVF and Willadino, L (2009) Selection of prickly-pear clones resistant to carmine cochineal Dactylopius sp. Brazilian Journal of Animal Science 38, 827831.Google Scholar
Wolfinger, R (1993) Covariance structure selection in general mixed models. Communications in Statistics: Simulation and Computation 22, 10791106.Google Scholar
Zanine, ADM, Santos, EM, Dórea, JRR, Dantas, PADS, Silva, TCD and Pereira, OG (2010) Evaluation of elephant grass silage with the addition of cassava scrapings. Revista Brasileira de Zootecnia 39, 26112616.Google Scholar