Hostname: page-component-848d4c4894-nmvwc Total loading time: 0 Render date: 2024-06-16T09:40:52.361Z Has data issue: false hasContentIssue false

Novel crop science to improve yield and resource use efficiency in water-limited agriculture

Published online by Cambridge University Press:  23 December 2010

W. J. DAVIES*
Affiliation:
Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK
J. ZHANG
Affiliation:
Department of Biology, Hong Kong Baptist University, Kowloon Road, Hong Kong, China
J. YANG
Affiliation:
Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Yangzhou University, Yangzhou, Jiangsu, China
I. C. DODD
Affiliation:
Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK
*
*To whom all correspondence should be addressed. Email: w.davies@lancaster.ac.uk

Summary

Globally, agriculture accounts for 0·80–0·90 of all freshwater used by humans and, in many crop production systems, this water use is unsustainable. The current paper focuses on the potential exploitation of novel drought stress biology in both crop improvement programmes and via changed crop management practices. The aim is to deliver ‘more crop per drop’. In order to respond to the challenge of feeding a world population of seven billion and growing, it is concluded that an interdisciplinary approach is needed involving new genetic opportunities and plant breeding. It is also shown how crop management can exploit the drought stress physiology of plants to deliver improved water productivity without sacrificing crop yield.

Type
Foresight Project on Global Food and Farming Futures
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Arshad, M. & Frankenburger, W. T. (1991). Microbial production of plant hormones. Plant and Soil 133, 18.CrossRefGoogle Scholar
Auge, R. M. (2001). Water relations, drought and vesicular–arbuscular mycorrhizal symbiosis. Mycorrhiza 11, 342.Google Scholar
Belder, P., Bouman, B. A. M., Cabangong, R., Guoan, L., Quilang, E. J. P., Li, Y., Spiertz, J. H. J. & Tuong, T. P. (2004). Effect of water-saving irrigation on rice yield and water use in typical lowland conditions in Asia. Agricultural Water Management 65, 193210.CrossRefGoogle Scholar
Belimov, A. A., Dodd, I. C., Hontzeas, N., Theobald, J. C., Safronova, V. I. & Davies, W. J. (2009). Rhizosphere bacteria containing ACC deaminase increase yield of plants grown in drying soil via both local and systemic hormone signalling. New Phytologist 181, 413423.CrossRefGoogle ScholarPubMed
Bolanos, J. & Edmeades, G. O. (1996). The importance of the anthesis-silking interval in breeding for drought tolerance in tropical maize. Field Crops Research 48, 6580.CrossRefGoogle Scholar
Borrell, A. K., Hammer, G. L. & Henzella, R. G. (2000). Does maintaining green leaf area in sorghum improve yield under drought? II. Dry matter production and yield. Crop Science 40, 10371048.CrossRefGoogle Scholar
Chaves, M. M., Santos, T. P., Sousa, C. R., Ortuno, M. F., Rodrigues, M. L., Lopes, C. M., Maroco, J. P. & Pereira, J. S. (2007). Deficit irrigation in grapevine improves water-use efficiency while controlling vigour and production quality. Annals of Applied Biology 150, 237252.CrossRefGoogle Scholar
Chenu, K., Chapman, S. C., Tardieu, F., McLean, G., Welcker, C. & Hammer, G. L. (2009). Simulating the yield impacts of organ-level quantitative trait loci associated with drought response in maize: a ‘gene-to-phenotype’ modeling approach. Genetics 183, 15071523.CrossRefGoogle Scholar
Cook, R. J. (2006). Toward cropping systems that enhance productivity and sustainability. Proceedings of the National Academy of Sciences, USA 103, 1838918394.CrossRefGoogle ScholarPubMed
Dakora, F. D. (2003). Defining new roles for plant and rhizobial molecules in sole and mixed plant cultures involving symbiotic legumes. New Phytologist 158, 3949.CrossRefGoogle Scholar
Dardanelli, M. S., De Cordoba, F. J. F., Espuny, M. R., Carvajal, M. A. R., Diaz, M. E. S., Serrano, A. M. G., Okon, Y. & Megias, M. (2008). Effect of Azospirillum brasilense co-inoculated with Rhizobium on Phaseolus vulgaris flavonoids and Nod factor production under salt stress. Soil Biology and Biochemistry 40, 27132721.CrossRefGoogle Scholar
Davies, W. J., Wilkinson, S. & Loveys, B. (2002). Stomatal control by chemical signalling and the exploitation of this mechanism to increase water use efficiency in agriculture. New Phytologist 153, 449460.CrossRefGoogle ScholarPubMed
Diaz-Perez, J. C. & Batal, K. D. (2002). Colored film plastic mulches affect tomato growth and yield via changes in root-zone temperature. Journal of the American Society of Horticultural Science 127, 127135.CrossRefGoogle Scholar
Dodd, I. C. (2009). Rhizosphere manipulations to maximize ‘crop per drop’ during deficit irrigation. Journal of Experimental Botany 60, 24542459.CrossRefGoogle ScholarPubMed
Dodd, I. C., He, J., Turnball, C. G. N., Lee, S. K. & Critchley, C. (2000). The influence of supra-optimal root-zone temperature on growth and stomatal conductance in Capsicum annnum L. Journal of Experimental Botany 51, 238249.CrossRefGoogle Scholar
Dos Santos, T. P., Lopes, C. M., Rodrigues, M. L., De Sousa, C. R., Maroco, J. P., Pereira, J. S., Silva, J. R. & Chaves, M. M. (2003). Partial rootzone drying: effects on fruit growth and quality of field grown grapevines (Vitis vinifera). Functional Plant Biology 30, 663671.CrossRefGoogle Scholar
Dumanski, J., Peiretti, R., Benites, J. R., McGarry, D. & Pieri, C. (2006). The paradigm of conservation agriculture. In Proceedings of the World Association of Soil and Water Conservation P1-7, pp. 5865. Beijing, P.R. China: UNAPCAEM.Google Scholar
Fan, M. S., Zhu, J. M., Richards, C., Brown, K. M. & Lynch, J. P. (2003). Physiological roles for aerenchyma in phosphorus-stressed roots. Functional Plant Biology 30, 493506.CrossRefGoogle ScholarPubMed
Fereres, E. & Connor, D. J. (2004). Sustainable water management in agriculture. In Challenges of the New Water Policies for the XXI Century (Eds Cabrera, E. & Cobacho, R.), pp. 157170. Lisse, The Netherlands: A. A. Balkema.Google Scholar
Fereres, E. & Soriano, M. A. (2007). Deficit irrigation for reducing agricultural water use. Journal of Experimental Botany 58, 147159.CrossRefGoogle ScholarPubMed
Glick, B. R., Penrose, D. M. & Li, J. P. (1998). A model for the lowering of plant ethylene concentrations by plant growth-promoting bacteria. Journal of Theoretical Biology 190, 6368.CrossRefGoogle Scholar
Hartung, W., Zhang, J. & Davies, W. J. (1994). Does abscisic acid play a stress physiological role in maize plants growing in heavily compacted soil? Journal of Experimental Botany 45, 221226.CrossRefGoogle Scholar
Herridge, D. & Rose, I. (2000). Breeding for enhanced nitrogen fixation in crop legumes. Field Crops Research 65, 229248.CrossRefGoogle Scholar
Ho, M. D., Rosas, J. C., Brown, K. M. & Lynch, J. P. (2005). Root architectural tradeoffs for water and phosphorus acquisition. Functional Plant Biology 32, 737748.CrossRefGoogle ScholarPubMed
Kang, S. Z., Su, X. L., Tong, L., Zhang, J. H., Zhang, L. & Davies, W. J. (2008). A warning from an ancient oasis: intensive human activities are leading to potential ecological and social catastrophe. International Journal of Sustainable Development and World Ecology 15, 440447.CrossRefGoogle Scholar
Kirkegaard, J., Christen, O., Krupinski, J. & Layzell, D. (2008). Break crop benefits in temperate wheat production. Field Crops Research 107, 185195.CrossRefGoogle Scholar
Kokakalis-Burelle, N., Vavrina, C. S., Rosskopf, E. N. & Shelby, R. A. (2002). Field evaluation of plant growth-promoting rhizobacteria amended transplant mixes and soil solarisation for tomato and pepper production in Florida. Plant and Soil 238, 257266.CrossRefGoogle Scholar
Li, L., Li, S. M., Sun, J. H., Zhou, L. L., Bao, X. G., Zhang, H. G. & Zhang, F. S. (2007). Diversity enhances agricultural productivity via rhizosphere phosphorus facilitation on phosphorus-deficient soils. Proceedings of the National Academy of Sciences, USA 104, 1119211196.CrossRefGoogle ScholarPubMed
Lugtenberg, B. & Kamilova, F. (2009). Plant-growth-promoting rhizobacteria. Annual Review of Microbiology 63, 541556.CrossRefGoogle ScholarPubMed
Lynch, J. P. (2007). Roots of the second green revolution. Australian Journal of Botany 55, 493512.CrossRefGoogle Scholar
Marino, D., Frendo, P., Ladrera, R., Zabalza, A., Puppo, A., Arrese-Igor, C. & Gonzalez, E. M. (2007). Nitrogen fixation control under drought stress: localized or systemic? Plant Physiology 143, 19681974.CrossRefGoogle ScholarPubMed
Masle, J. & Passioura, J. B. (1987). The effect of soil strength on the growth of young wheat plants. Australian Journal of Plant Physiology 14, 643656.Google Scholar
McLaughlin, J. E. & Boyer, J. S. (2004). Glucose localization in maize ovaries when kernel number decreases at low water potential and sucrose is fed to the stems. Annals of Botany 94, 7586.CrossRefGoogle ScholarPubMed
Mingo, D. M., Theobald, J. C., Bacon, M. A., Davies, W. J. & Dodd, I. C. (2004). Biomass allocation in tomato Lycopersicon esculentum plants grown under partial rootzone drying: enhancement of root growth. Functional Plant Biology 31, 971978.CrossRefGoogle ScholarPubMed
Nelson, D. R. & Mele, P. M. (2006). The impact of crop residue amendments and lime on microbial community structure and nitrogen-fixing bacteria in the wheat rhizosphere. Australian Journal of Soil Research 44, 319329.CrossRefGoogle Scholar
Passioura, J. B. (1977). Grain yield, harvest index, and water use of wheat. Journal of the Australian Institute of Agricultural Science 43, 117121.Google Scholar
Rebetzke, G. J., Condon, A. G., Richards, R. A. & Farquhar, G. D. (2002). Selection for reduced carbon isotope discrimination increases aerial biomass and grain yield of rainfed bread wheat. Crop Science 42, 739745.CrossRefGoogle Scholar
Rivero, R. M., Kojima, M., Gepstein, A., Sakikibara, H., Mittler, R., Gepstein, S. & Blumwald, E. (2007). Delayed leaf senescence induces extreme drought tolerance in a flowering plant. Proceedings of the National Academy of Sciences, USA 104, 1963119636.CrossRefGoogle Scholar
Rochette, P. (2008). No-till only increases N2O emissions in poorly-aerated soils. Soil and Tillage Research 101, 97100.CrossRefGoogle Scholar
Sadras, V. O. (2009). Does partial root-zone drying improve irrigation water productivity in the field? A meta-analysis. Irrigation Science 27, 183190.CrossRefGoogle Scholar
Stoll, M., Loveys, B. R. & Dry, P. (2000). Hormonal changes induced by partial root zone drying of irrigated grapevine. Journal of Experimental Botany 51, 16271634.CrossRefGoogle Scholar
Trenbath, B. R. (1993). Intercropping for the management of pests and diseases. Field Crops Research 34, 381405.CrossRefGoogle Scholar
Turner, N. C. (2004). Agronomic options for improving rainfall-use efficiency of crops in dryland farming systems. Journal of Experimental Botany 55, 24132425.CrossRefGoogle ScholarPubMed
Vories, E. D., Counce, P. A. & Keisling, T. C. (2002). Comparison of flooded and furrow-irrigated rice on clay. Irrigation Science 21, 139144.Google Scholar
Watt, M., Kirkegaard, J. A. & Rebetzke, G. J. (2005). A wheat genotype developed for rapid leaf growth copes well with the biological and physical constraints of unploughed soil. Functional Plant Biology 32, 695706.CrossRefGoogle ScholarPubMed
Whish, J., Butler, G., Castor, M., Cawthray, S., Broad, I., Carberry, P., Hammer, G., McLean, G., Routley, R. & Yeates, S. (2005). Modelling the effects of row configuration on sorghum yield reliability in north-eastern Australia. Australian Journal of Agricultural Research 56, 1123.CrossRefGoogle Scholar
Wilkinson, S. & Davies, W. J. (2002). ABA-based chemical signalling: the co-ordination of responses to stress in plants. Plant Cell and Environment 25, 195210.CrossRefGoogle ScholarPubMed
Yang, J. & Zhang, J. (2010). Crop management techniques to enhance harvest index in rice. Journal of Experimental Botany 61, 31773189.CrossRefGoogle ScholarPubMed
Zhang, J. & Yang, J. (2004). Crop yield and water use efficiency: a case study in rice. In Water Use Efficiency in Plant Biology (Ed. Bacon, M. A.), pp. 189227. Oxford, UK: Blackwell Publishing.Google Scholar