Skip to main content Accessibility help

Agronomic performance of maize populations divergently selected for diferulate cross-linkage

  • R. SANTIAGO (a1), J. BARROS-RIOS (a2), A. ALVAREZ (a3) and R. A. MALVAR (a4)

The direct response of a divergent selection programme for total cell wall ester-linked diferulate concentration in maize pith stalk tissues and its indirect effect on cell wall degradability and corn borer resistance have been previously evaluated. Since increased total diferulate concentration is expected to improve crop performance in response to corn borers, the objective of the present research was to evaluate the indirect response of the divergent selection for diferulates on agronomic traits under corn borer infestation. For this purpose, five maize populations with contrasting total diferulate concentrations were evaluated four environments for performance under protected and infested conditions. Measured traits were: days to anthesis, days to silking, plant height, stalk lodging, grain moisture at harvest and grain yield. High diferulate populations showed a significant reduction in anthesis (precocity), and were 11 cm taller than the starting population, while low diferulate populations were 9 cm shorter, and showed nearly 1 t/ha lower grain yield than the original and high diferulate populations. The analysis showed that cycles of selection were positively correlated with flowering, plant height and grain yield. The infestations with borers produced >1 t/ha of reduction in grain yield; although the higher diferulate populations showed a better performance under infestation than the low diferulate populations. This positive effect on the grain yield by increasing diferulate content can be considered an extra in order to breed for resistance to corn borers.

Corresponding author
* To whom all correspondence should be addressed. Email:
Hide All
Albrecht, K. A., Martin, M. J., Russel, W. A., Wedin, W. F. & Buxton, D. R. (1986). Chemical and in vitro digestible dry matter composition of maize stalks after selection for stalk strength and stalk rot resistance. Crop Science 26, 10511055.
Allen, M. S., O'Neil, K. A., Main, D. G. & Beck, J. (1991). Relationship among yield and quality traits of corn hybrids for silage. Journal of Dairy Science 74 (Suppl 1), 221.
Barrière, Y., Ralph, J., Mechin, V., Guillaumie, S., Grabber, J. H., Argillier, O., Chabbert, B. & Lapierre, C. (2004). Genetic and molecular basis of grass cell wall biosynthesis and degradability. II. Lessons from brown midrib mutants. Comptes Rendus de Biologie 327, 847860.
Barros-Rios, J., Malvar, R. A., Jung, H. J. G. & Santiago, R. (2011). Cell wall composition as a maize defense mechanism against corn borers. Phytochemistry 72, 365371.
Barros-Rios, J., Malvar, R. A., Jung, H. J. G., Bunzel, M. & Santiago, R. (2012). Divergent selection for ester-linked diferulates in maize pith stalk tissues. Effects on cell wall composition and degradability. Phytochemistry 83, 4350.
Barros-Rios, J., Santiago, R., Jung, H. J. G. & Malvar, R. A. (2013). Effect of cell wall diferuloylation on agronomic fitness and silage quality in maize. In Proceedings of the XIII Cell Wall Meeting 2013, Abstract Book, p. 54. Abstract O6-06. Nantes, France.
Barros-Rios, J., Santiago, R., Jung, H. J. G. & Malvar, R. A. (2015). Covalent cross-linking of cell wall polysaccharides through esterified diferulates as a maize resistance mechanism against corn borers. Journal of Agricultural and Food Chemistry 63, 22062214.
Bergvinson, D. J., Arnason, J. T., Hamilton, R. I., Mihm, J. A. & Jewell, D. C. (1994). Determining leaf toughness and its role in maize resistance to the European corn borer (Lepidoptera: Pyralidae). Journal of Economic Entomology 87, 17431748.
Bergvinson, D. J., Hamilton, R. I. & Arnason, J. T. (1995). Leaf profile of maize resistance factors to European corn borer, Ostrinia nubilalis . Journal of Chemical Ecology 21, 343354.
Bergvinson, D. J., Arnason, J. T. & Hamilton, R. I. (1997). Phytochemical changes during recurrent selection for resistance to the European corn borer. Crop Science 37, 15671572.
Brookes, G. (2009). The Existing and Potential Impact of using GM Insect Resistant (GM IR) Maize in the European Union. Dorchester, UK: PG Economics. Available from: (verified 9 October 2015).
Butrón, A., Malvar, R. A., Velasco, P., Vales, M. I. & Ordas, A. (1999). Combining abilities for maize stem antibiosis, yield loss, and yield under infestation and non-infestation with pink stem borer. Crop Science 39, 691696.
Butrón, A., Romay, M. C., Peña-Asin, J., Alvarez, A. & Malvar, R. A. (2012). Genetic relationship between maize resistance to corn borer attack and yield. Crop Science 52, 11761180.
Butrón, A., Samayoa, F., Santiago, R. & Malvar, R. A. (2014). Selection efficiency of tunnel length and stalk breakage to obtain maize inbred lines resistant to stem borer attack. Euphytica 197, 295302.
Casler, M. D. (2005). Agricultural fitness of smooth bromegrass populations selected for divergent fiber concentration. Crop Science 45, 3643.
Casler, M. D. & van Santen, E. (2010). Breeding objectives in forages. In Fodder Crops and Amenity Grasses (Eds Boller, B., Posselt, U. K. & Veronesi, F.), pp. 115136. Handbook of Plant Breeding Vol. 5. New York: Springer.
Cherry, A. J., Lomer, C. J., Djegui, D. & Schulthess, F. (1999). Pathogen incidence and their potential as microbial control agents in IPM of maize stem borers in West Africa. Biocontrol 44, 301327.
Cirilo, A. G. & Andrade, F. H. (1994). Sowing date and maize productivity: II. Kernel number determination. Crop Science 34, 10441046.
Eizaguirre, M. & Albajes, R. (1992). Diapause induction in the stem corn borer, Sesamia nonagrioides (Lepidoptera: Noctuidae). Entomologia Generalis 17, 277283.
Fry, S. C. (1986). Cross-linking of matrix polymers in the growing cell walls of angiosperms. Annual Review of Plant Physiology 37, 165186.
Fry, S. C., Willis, S. C. & Paterson, A. E. J. (2000). Intraprotoplasmic and wall-localised formation of arabinoxylan-bound diferulates and larger ferulate coupling-products in maize cell-suspension cultures. Planta 211, 679692.
Grabber, J. H., Ralph, J. & Hatfield, R. D. (2000). Cross-linking of maize walls by ferulate dimerization and incorporation into lignin. Journal of Agricultural and Food Chemistry 48, 61066113.
Inoue, N. & Kasuga, S. (1989). Agronomic traits and nutritive value of stover in brown midrib-3 maize hybrids. Grass Science 35, 220227.
Klenke, J. R., Russel, W. A. & Guthrie, W. D. (1986). Recurrent selection for resistance to European corn borer in a corn synthetic and correlated effects on agronomic traits. Crop Science 26, 864868.
Lee, M. H. & Brewbaker, J. L. (1984). Effects of brown midrib-3 on yields and yield components of maize. Crop Science 24, 105108.
Lewis, M. F., Lorenzana, R. E., Jung, H. J. G. & Bernardo, R. (2010). Potential for simultaneous improvement of corn grain yield and stover quality for cellulosic ethanol. Crop Science 50, 516523.
Lourenco, M. E., Anderson, I. C. & Wedin, W. F. (1986). Stover forage quality as affected by stalk strength in maize (Zea mays L.). In Breeding of Silage Maize, Proceedings of 13th Congress of the Maize and Sorghum Section, EUCARPIA (Eds Dolstra, O. & Miedema, P.), pp. 101106. Wageningen, The Netherlands: PUDOC.
Marita, J. M., Vermerris, W., Ralph, J. & Hatfield, R. D. (2003). Variations in the cell wall composition of maize brown midrib mutants. Journal of Agricultural and Food Chemistry 51, 13131321.
Meissle, M., Romeis, J. & Bigler, F. (2011). Bt maize and integrated pest management: a European perspective. Pest Management Science 67, 10491058.
Miller, J. E., Geadelmann, J. L. & Marten, G. C. (1983). Effect of the brown-midrib allele on maize silage quality and yield. Crop Science 23, 493496.
Ordás, B., Butrón, A., Alvarez, A., Revilla, P. & Malvar, R. A. (2012). Comparison of two methods of reciprocal recurrent selection in maize (Zea mays L.). Theoretical and Applied Genetics 124, 11831191.
Pedersen, J. F., Vogel, K. P. & Funnell, D. L. (2005). Impact of reduced lignin on plant fitness. Crop Science 45, 812819.
Ramputh, A. I. (2002). Soluble and cell wall bound phenolic-mediated insect resistance in corn and sorghum. Ph.D. Thesis, Ottawa-Carleton Institute of Biology, Ontario, Canada.
Russell, W. A., Lawrence, G. D. & Guthrie, W. D. (1979). Effects of recurrent selection for European corn borer resistance on other agronomic characters in synthetic cultivars of corn. Maydica 24, 3347.
Samayoa, L. F., Butrón, A. & Malvar, R. A. (2014). QTL mapping for maize resistance and yield under infestation with Sesamia nonagrioides . Molecular Breeding 34, 13311344.
Sandoya, G., Butrón, A., Alvarez, A., Ordas, A. & Malvar, R. A. (2008). Direct response of a maize synthetic to recurrent selection for resistance to stem borers. Crop Science 48, 113118.
Sandoya, G., Butrón, A., Santiago, R., Alvarez, A. & Malvar, R. A. (2010). Indirect response to selection for improving resistance to the Mediterranean corn borer (Sesamia nonagrioides Lef) in maize. Euphytica 172, 231237.
Santiago, R. & Malvar, R. A. (2010). Role of dehydrodiferulates in maize resistance to pests and diseases. International Journal of Molecular Science 11, 691703.
Santiago, R., Butrón, A., Arnason, J. T., Reid, L. M., Souto, X. C. & Malvar, R. A. (2006). Putative role of pith cell wall phenylpropanoids in Sesamia nonagrioides (Lepidoptera: Noctuidae) resistance. Journal of Agricultural and Food Chemistry 54, 22742279.
Santiago, R., Sandoya, G., Butrón, A., Barros, J. & Malvar, R. A. (2008). Changes in phenolic concentrations during recurrent selection for resistance to the Mediterranean corn borer (Sesamia nonagrioides Lef.). Journal of Agricultural and Food Chemistry 56, 80178022.
Santiago, R., Barros-Rios, J. & Malvar, R. A. (2013 a). Impact of cell wall composition on maize resistance to pests and diseases. International Journal of Molecular Science 14, 69606980.
Santiago, R., Cao, A., Malvar, R. A. & Butrón, A. (2013 b). Is it possible to control fumonisin contamination in maize kernels by using genotypes resistant to the Mediterranean Corn Borer? Journal of Economic Entomology 106, 22412246.
SAS Institute (2007). The SAS System. SAS Online Doc HTML Format, Version 8. Cary, NC: SAS Institute Inc.
Saulnier, L., Crepeau, M. J., Lahaye, M., Thibault, J. F., Garcia-Conesa, M. T., Kroon, P. A. & Williamson, G. (1999). Isolation and structural determination of two 5, 5′-diferuloyl oligosaccharides indicate that maize heteroxylans are covalently cross-linked by oxidatively coupled ferulates. Carbohydrate Research 320, 8292.
Troyer, A. F. (1996). Breeding widely adapted, popular maize hybrids. Euphytica 92, 163174.
Vattikonda, M. R. & Hunter, R. B. (1983). Comparison of grain yield and whole-plant silage production of recommended corn hybrids. Canadian Journal of Plant Science 63, 601609.
Velasco, P., Revilla, P., Monetti, L., Butrón, A. M., Ordas, A. & Malvar, R. A. (2007). Corn borers (Lepidoptera: Noctuidae; Crambidae) in northwestern Spain: population dynamics and distribution. Maydica 52, 195203.
Vermerris, W. & McIntyre, L. M. (1999). Time to flowering in brown midrib mutants of maize: an alternative approach to the analysis of developmental traits. Heredity 83, 171178.
Vermerris, W., Thompson, K. J. & McIntyre, L. M. (2002). The maize Brown midrib 1 locus affects cell wall composition and plant development in a dose-dependent manner. Heredity 88, 450457.
Vignols, F., Rigau, J., Torres, M. A., Capellades, M. & Puigdomenech, P. (1995). The brown-midrib3 (bm3) mutation in maize occurs in the gene encoding caffeic acid O-methyl transferase. Plant Cell 7, 407416.
Weller, R. F., Phipps, R. H. & Cooper, A. (1985). The effect of the brown midrib-3 gene on the maturity and yield of forage maize. Grass and Forage Science 40, 335339.
Wolf, D. P., Coors, J. G., Albrecht, K. A., Undersander, D. J. & Carter, P. R. (1993). Agronomic evaluations of maize genotypes selected for extreme fiber concentrations. Crop Science 33, 13591365.
Zadoks, J. C., Chang, T. T. & Konzak, C. F. (1974). A decimal code for the growth stages of cereals. Weed Research 14, 415421.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

The Journal of Agricultural Science
  • ISSN: 0021-8596
  • EISSN: 1469-5146
  • URL: /core/journals/journal-of-agricultural-science
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed