Skip to main content Accessibility help
×
×
Home

Climate change impacts on date palm cultivation in Saudi Arabia

  • A. ALLBED (a1) (a2), L. KUMAR (a1) and F. SHABANI (a1)
Summary

Date palm (Phoenix dactylifera L.) is an important cash crop in many countries, including Saudi Arabia. Understanding the likely potential distribution of this crop under current and future climate scenarios will enable environmental managers to prepare appropriate strategies to manage the changes. In the current study, the simulation model CLIMEX was used to develop a niche model to estimate the impacts of climate change on the current and future potential distribution of date palm. Two global climate models (GCMs), CSIRO-Mk3·0 and MIROC-H under the A2 emission scenario for 2050 and 2100, were used to assess the impacts of climate change. A sensitivity analysis was conducted to identify which model parameters had the most effect on date palm distribution. Further refinements of the potential distributions were performed through the integration of six non-climatic parameters in a geographic information system. Areas containing suitable soil taxonomy, soil texture, soil salinity, land use, landform and slopes of <7° for date palm were selected as suitable refining variables in order to achieve more realistic models. The results from both GCMs exhibited a significant reduction in climatic suitability for date palm cultivation in Saudi Arabia by 2100. Climate sensitivity analysis indicates that the lower optimal soil moisture, cold stress temperature threshold and wet stress threshold parameters had the most effect on sensitivity, while other parameters were moderately sensitive or insensitive to change. The study also demonstrated that the inclusion of non-climatic parameters with CLIMEX outputs increased the explanatory power of the models. Such models can provide early warning scenarios for how environmental managers should respond to changes in the distribution of the date palm in Saudi Arabia.

Copyright
Corresponding author
*To whom all correspondence should be addressed. E-Mail: aallbed@myune.edu.au
References
Hide All
Abbas, M. F., Jasim, A. M. & Shareef, H. J. (2015). Role of sulphur in salinity tolerance of date palm (Phoenix dactylifera L.) offshoots cvs. Berhi and Sayer. International Journal of Agricultural and Food Science 5, 9297.
Al-Senaidy, A. M. & Ismael, M. A. (2011). Purification and characterization of membrane-bound peroxidase from date palm leaves (Phoenix dactylifera L.). Saudi Journal of Biological Sciences 18, 293298.
Alabdulkader, A. M., Al-Amoud, A. I. & Awad, F. S. (2012). Optimization of the cropping pattern in Saudi Arabia using a mathematical programming sector model. Agricultural Economics (Zemědělská Ekonomika) 58, 5660.
Alabdulkader, A. M., Al-Amoud, A. I. & Awad, F. S. (2016). Adaptation of the agricultural sector to the effects of climate change in arid regions: competitive advantage date palm cropping patterns under water scarcity conditions. Journal of Water and Climate Change 7, 514525.
Alahuhta, J., Heino, J. & Luoto, M. (2011). Climate change and the future distributions of aquatic macrophytes across boreal catchments. Journal of Biogeography 38, 383393.
Aleid, S. M., Al-Khayri, J. M. & Al-Bahrany, A. M. (2015). Date palm status and perspective in Saudi Arabia. In Date Palm Genetic Resources and Utilization: Volume 2: Asia and Europe (Eds Al-Khayri, J. M., Jain, S. M. & Johnson, D. V.), pp. 4995. Dordrecht, the Netherlands: Springer.
Aljaryian, R., Kumar, L. & Taylor, S. (2016). Modelling the current and potential future distributions of the sunn pest Eurygaster integriceps (Hemiptera: Scutelleridae) using CLIMEX. Pest Management Science 72, 19892000.
Alrasbi, S. A. R., Hussain, N. & Schmeisky, H. (2010). Evaluation of the growth of date palm seedlings irrigated with saline water in the Sultanate of Oman. Acta Horticulturae 882, 233246.
Araújo, M. B. & Pearson, R. G. (2005). Equilibrium of species’ distributions with climate. Ecography 28, 693695.
Ayers, R. S. & Westcot, D. W. (1985). Water Quality for Agriculture. Rome, Italy: FAO.
Beaumont, L. J., Hughes, L. & Pitman, A. J. (2008). Why is the choice of future climate scenarios for species distribution modelling important? Ecology Letters 11, 11351146.
Bokhary, H. A. (2010). Seed-borne fungi of date-palm, Phoenix dactylifera L. from Saudi Arabia. Saudi Journal of Biological Sciences 17, 327329.
Caviezel, C., Hunziker, M., Schaffner, M. & Kuhn, N. J. (2014). Soil–vegetation interaction on slopes with bush encroachment in the central Alps – adapting slope stability measurements to shifting process domains. Earth Surface Processes and Landforms 39, 509521.
Chao, C. T. & Krueger, R. R. (2007). The date palm (Phoenix dactylifera L.): overview of biology, uses, and cultivation. HortScience 42, 10771082.
Cheng, J.-F., Wan, F.-H. & Guo, J.-Y. (2006). Potential distribution of Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae) in China by using combined CLIMEX and GIS tools [J]. Scientia Agricultura Sinica 3, 013.
Darfaoui, E. & Assiri, A. (2009). Response to Climate Change in the Kingdom of Saudi Arabia. Internal Working Paper FAO RNE. Cairo, Egypt: FAO.
Dash, M. C. (2001). Fundamentals of Ecology. New Delhi, India: Tata McGraw-Hill Education.
Dixon, G. R. (2012). Climate change – impact on crop growth and food production, and plant pathogens. Canadian Journal of Plant Pathology 34, 362379.
Drinnan, J. E. & Menzel, C. M. (1995). Temperature affects vegetative growth and flowering of coffee (Coffea arabica L.). Journal of Horticultural Science 70, 2534.
El Hadrami, A., Daayf, F. & El Hadrami, I. (2011). In vitro selection for abiotic stress in date palm. In Date Palm Biotechnology (Eds Jain, S. M., Al-Khayri, J. M. & Johnson, D. V.), pp. 237252. Dordrecht, the Netherlands: Springer.
Erskine, W., Moustafa, A. T., Osman, A. E., Lashine, Z., Nejatian, A., Badawi, T. & Ragy, S. M. (2004). Date palm in the GCC countries of the Arabian Peninsula. In Proceedings of the Regional Workshop on Date Palm Development in the Arabian Peninsula Abu Dhabi, 29–31 May 2004, UAE. Aleppo, Syria: ICARDA.
FAO (2013). FAOSTAT. Rome, Italy: FAO. Available from: http://faostat.fao.org/site/342/default.aspx (verified 24 March 2017).
Field, C. B., Barros, V., Stocker, T. F., Qin, D., Dokken, D. J., Ebi, K. L., Mastrandrea, M. D., Mach, J. K., Plattner, G. K., Allen, S. K., Tignor, M. & Midgley, P. M. (2012). Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation: A Special Report of Working Groups I and II of the Intergovernmental Panel on Climate Change. New York: Cambridge University Press.
Hampe, A. (2004). Bioclimate envelope models: what they detect and what they hide. Global Ecology and Biogeography 13, 469471.
Hassan, S., Bakhsh, K., Gill, Z. A., Maqbool, A. & Ahmed, W. (2006). Economics of growing date palm in Punjab, Pakistan. International Journal of Agriculture and Biology 8, 788792.
Hyvönen, T., Luoto, M. & Uotila, P. (2012). Assessment of weed establishment risk in a changing European climate. Agricultural and Food Science 21, 348360.
IPCC (2007). Climate change 2007: impacts, adaptation and vulnerability. In Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (Eds Parry, M. L., Canziani, O. F., Palutikof, J. P., Van Der Linden, P. J. & Hanson, C. E.), pp. 976. Cambridge, UK: Cambridge University Press.
Jain, S. M. (2011). Prospects of in vitro conservation of date palm genetic diversity for sustainable production. Emirates Journal of Food and Agriculture 23, 110119.
Jarvis, D. I., Hodgkin, T., Brown, A. H. D., Tuxill, J., Noriega, I. L., Smale, M. & Sthapit, B. (2016). Crop Genetic Diversity in the Field and on the Farm: Principles and Applications in Research Practices. New Haven: Yale University Press.
Jones, P. G. & Thornton, P. K. (2003). The potential impacts of climate change on maize production in Africa and Latin America in 2055. Global Environmental Change 13, 5159.
Kassem, M. (2007). Water requirements and crop coefficient of date palm trees Sukariah CV. Misr Journal of Agricultural Engineering 24, 339359.
Khuder, H., Danjon, F., Stokes, A. & Fourcaud, T. (2006). Growth response and root architecture of black locust seedlings growing on slopes and subjected to mechanical perturbation. In Proceedings of the 5th Plant Biomechanics Conference–Stockholm, August 28 – September 1 2006 (Ed. Salmén, L.), pp. 299303. Stockholm, Sweden: STFI-Packforsk AB.
Kotak, S., Larkindale, J., Lee, U., von Koskull-Döring, P., Vierling, E. & Scharf, K.-D. (2007). Complexity of the heat stress response in plants. Current Opinion in Plant Biology 10, 310316.
Kriticos, D. J., Yonow, T. & McFadyen, R. E. (2005). The potential distribution of Chromolaena odorata (Siam weed) in relation to climate. Weed Research 45, 246254.
Kriticos, D. J., Webber, B. L., Leriche, A., Ota, N., Macadam, I., Bathols, J. & Scott, J. K. (2012). CliMond: global high-resolution historical and future scenario climate surfaces for bioclimatic modelling. Methods in Ecology and Evolution 3, 5364.
Lim, T. K. (2012). Edible Medicinal and Non-Medicinal Plants. Dordrecht, the Netherlands: Springer.
Luoto, M., Heikkinen, R. K., Pöyry, J. & Saarinen, K. (2006). Determinants of the biogeographical distribution of butterflies in boreal regions. Journal of Biogeography 33, 17641778.
Manickavasagan, A., Mohamed Essa, M. & Sukumar, E. (2012). Dates: Production, Processing, Food, and Medicinal Values. Boca Raton, FL: CRC Press.
Mikki, M. S. (1998). Present status and future prospects of dates and dates palm industries in Saudi Arabia. In Proceedings of the First International Conference on the Date Palm (Eds Afifi, M. & Al-Badawy, A.), pp. 469507. Al-Ain, UAE: United Arab Emirates University.
Morton, J. F. & Dowling, C. F. (1987). Fruits of Warm Climates. Miami, FL: J.F. Morton.
Nakicenovic, N., Alcamo, J., Davis, G., de Vries, B., Fenhann, J., Gaffin, S., Gregory, K., Grubler, A., Jung, T. Y., Kram, T., La Rovere, E. L., Michaelis, L., Mori, S., Morita, T., Pepper, W., Pitcher, H. M., Price, L., Riahi, K., Roehrl, A., Rogner, H.-H., Sankovski, A., Schlesinger, M., Shukla, P., Smith, S. J., Swart, R., van Rooijen, S., Victor, N. & Dadi, Z. (2000). Special Report on Emissions Scenarios: A Special Report of Working Group III of the Intergovernmental Panel on Climate Change. New York, US: Cambridge University Press.
Nazeri, M., Jusoff, K., Madani, N., Mahmud, A. R., Bahman, A. R. & Kumar, L. (2012). Predictive modeling and mapping of malayan sun bear (Helarctos malayanus) distribution using maximum entropy. PLoS ONE 7, e48104. doi:10.1371/journal.pone.0048104.
Porfirio, L. L., Harris, R. M. B., Lefroy, E. C., Hugh, S., Gould, S. F., Lee, G., Bindoff, N. L. & Mackey, B. (2014). Improving the use of species distribution models in conservation planning and management under climate change. PLoS ONE 9, e113749. doi:10.1371/journal.pone.0113749
Radinger, J., Wolter, C. & Kail, J. (2015). Spatial scaling of environmental variables improves species-habitat models of fishes in a small, sand-bed lowland river. PLoS ONE 10, e0142813. doi:10.1371/journal.pone.0142813
Ramirez-Cabral, N. Y. Z., Kumar, L. & Taylor, S. (2016). Crop niche modeling projects major shifts in common bean growing areas. Agricultural and Forest Meteorology 218–219, 102113.
Ramoliya, P. J. & Pandey, A. N. (2003). Soil salinity and water status affect growth of Phoenix dactylifera seedlings. New Zealand Journal of Crop and Horticultural Science 31, 345353.
Rogers, E. D. & Benfey, P. N. (2015). Regulation of plant root system architecture: implications for crop advancement. Current Opinion in Biotechnology 32, 9398.
Salah, A., Van Ranst, E. & Hisham, E. (2001). Land suitability assessment for date palm cultivation in the Eastern Nile Delta, Egypt using an automated land evaluation system and GIS. In Proceedings of the Second International Conference on Date Palms, Al-Ain, United Arab Emirates, pp. 800820. Al-Ain, UAE, UAE University.
Schlesinger, M. J. (1990). Heat shock proteins. The Journal of Biological Chemistry 265, 1211112114.
Shabani, F. & Kumar, L. (2013). Risk levels of invasive Fusarium oxysporum f. sp. in areas suitable for date palm (Phoenix dactylifera) cultivation under various climate change projections. PLoS ONE 8, e83404. doi:10.1371/journal.pone.0083404
Shabani, F. & Kumar, L. (2014). Sensitivity analysis of CLIMEX parameters in modeling potential distribution of Phoenix dactylifera L. PLoS ONE 9, e94867. doi:10.1371/journal.pone.0094867
Shabani, F., Kumar, L. & Taylor, S. (2012). Climate change impacts on the future distribution of date palms: a modeling exercise using CLIMEX. PLoS ONE 7, e48021. doi:10.1371/journal.pone.0048021
Shabani, F., Kumar, L. & Esmaeili, A. (2014 a). Future distributions of Fusarium oxysporum f. spp. in European, Middle Eastern and North African agricultural regions under climate change. Agriculture, Ecosystems & Environment 197, 96105.
Shabani, F., Kumar, L. & Taylor, S. (2014 b). Projecting date palm distribution in Iran under climate change using topography, physicochemical soil properties, soil taxonomy, land use, and climate data. Theoretical and Applied Climatology 118, 553567.
Shabani, F., Kumar, L. & Taylor, S. (2014 c). Suitable regions for date palm cultivation in Iran are predicted to increase substantially under future climate change scenarios. Journal of Agricultural Science, Cambridge 152, 543557.
Shabani, F., Kumar, L. & Ahmadi, M. (2016). A comparison of absolute performance of different correlative and mechanistic species distribution models in an independent area. Ecology and Evolution 6, 59735986.
Silva, D. P., Vilela, B., De Marco, P. Jr & Nemésio, A. (2014). Using ecological niche models and niche analyses to understand speciation patterns: the case of sister neotropical orchid bees. PLoS ONE 9, e113246. doi:10.1371/journal.pone.0113246
Soil Survey Staff (2010). Keys to Soil Taxonomy (Eleventh Edition). Washington, DC: USDA-NRCS.
Sormunen, H., Virtanen, R. & Luoto, M. (2011). Inclusion of local environmental conditions alters high-latitude vegetation change predictions based on bioclimatic models. Polar Biology 34, 883897.
Suppiah, R., Hennessy, K. J., Whetton, P. H., McInnes, K. L., Macadam, I., Bathols, J. M., Ricketts, J. H. & Page, C. M. (2007). Australian climate change projections derived from simulations performed for the IPCC 4th Assessment Report. Australian Meteorological Magazine 56, 131152.
Sutherst, R. W. & Maywald, G. (2005). A climate model of the red imported fire ant, Solenopsis invicta Buren (Hymenoptera: Formicidae): implications for invasion of new regions, particularly Oceania. Environmental Entomology 34, 317335.
Sutherst, R. W. & Maywald, G. F. (1985). A computerised system for matching climates in ecology. Agriculture, Ecosystems & Environment 13, 281299.
Sutherst, R., Maywald, G. & Kriticos, D. (2007). CLIMEX version 3: User's Guide. South Yarra, Australia: Hearne Scientific Software.
Taylor, S., Kumar, L. & Reid, N. (2012 a). Impacts of climate change and land-use on the potential distribution of an invasive weed: a case study of Lantana camara in Australia. Weed Research 52, 391401.
Taylor, S., Kumar, L., Reid, N. & Kriticos, D. J. (2012 b). Climate change and the potential distribution of an invasive shrub, Lantana camara L. PLoS ONE 7, e35565. doi:10.1371/journal.pone.0035565
Thung, M. & Rao, I. M. (1999). Integrated management of abiotic stresses. In Common Bean Improvement in the Twenty-First Century (Ed. Singh, S. P.), pp. 331370. Developments in Plant Breeding vol. 7. Dordrecht, the Netherlands: Springer.
Vergani, C., Schwarz, M., Cohen, D., Thormann, J. J. & Bischetti, G. B. (2014). Effects of root tensile force and diameter distribution variability on root reinforcement in the Swiss and Italian Alps. Canadian Journal of Forest Research 44, 14261440.
Vincenzi, S., Zucchetta, M., Franzoi, P., Pellizzato, M., Pranovi, F., De Leo, G. A. & Torricelli, P. (2011). Application of a random forest algorithm to predict spatial distribution of the potential yield of Ruditapes philippinarum in the Venice lagoon, Italy. Ecological Modelling 222, 14711478.
Wahid, A., Gelani, S., Ashraf, M. & Foolad, M. R. (2007). Heat tolerance in plants: an overview. Environmental and Experimental Botany 61, 199223.
Wharton, T. N. & Kriticos, D. J. (2004). The fundamental and realized niche of the Monterey Pine aphid, Essigella californica (Essig) (Hemiptera: Aphididae): implications for managing softwood plantations in Australia. Diversity and Distributions 10, 253262.
Wheeler, T. & Von Braun, J. (2013). Climate change impacts on global food security. Science 341, 508513.
Woodward, F. I. (1987). Climate and Plant Distribution. Cambridge, UK: Cambridge University Press.
Yu, B., Zhu, T., Breisinger, C. & Hai, N. M. (2010). Impacts of Climate Change on Agriculture and Policy Options for Adaptation: The Case of Vietnam. IFPRI Discussion Paper 01015. Washington, DC: International Food Policy Research Institute.
Zaid, A. & Arias Jiménez, E. J. (2002). Date Palm Cultivation. FAO Plant Production and Protection Paper 156. Rome: FAO Plant Production and Protection Division.
Zatari, T. M. (2011). Second National Communication: Kingdom of Saudi Arabia. A Report Prepared, Coordinated by the Presidency of Meteorology and Environment (PME), Riyadh, Saudi Arabia, and submitted to the United Nations Framework Convention on Climate Change [UNFCCC]. Bonn, Germany: UNFCCC.
Zhai, F. & Zhuang, J. (2012). Agricultural impact of climate change: a general equilibrium analysis with special reference to Southeast Asia. In Climate Change in Asia and the Pacific: How Can Countries Adapt? (Eds Anbumozhi, V., Breiling, M., Pathmarajah, S. & Reddy, V. R.), pp. 1735. New Delhi, India: SAGE Publications India Pvt Ltd.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

The Journal of Agricultural Science
  • ISSN: 0021-8596
  • EISSN: 1469-5146
  • URL: /core/journals/journal-of-agricultural-science
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed