Hostname: page-component-8448b6f56d-c4f8m Total loading time: 0 Render date: 2024-04-23T17:47:12.208Z Has data issue: false hasContentIssue false

Effect of three crop rotations and four residue levels on canola and bean grain yield and residue production

Published online by Cambridge University Press:  17 February 2023

Juan Hirzel*
Affiliation:
Instituto de Investigaciones Agropecuarias, INIA Quilamapu, Av. Vicente Méndez 515, Chillán, Chile
Pablo Undurraga
Affiliation:
Instituto de Investigaciones Agropecuarias, INIA Quilamapu, Av. Vicente Méndez 515, Chillán, Chile
Lorenzo León
Affiliation:
Instituto de Investigaciones Agropecuarias, INIA Quilamapu, Av. Vicente Méndez 515, Chillán, Chile
Iván Matus
Affiliation:
Instituto de Investigaciones Agropecuarias, INIA Quilamapu, Av. Vicente Méndez 515, Chillán, Chile
*
Author for correspondence: Juan Hirzel, E-mail: jhirzel@inia.cl

Abstract

Crop rotation in agriculture can lead to increased crop productivity in the rotation and improved soil fertility as a result of residue incorporation. Unfortunately, residue incorporation is not a common practice in crop production systems under the Mediterranean regime, largely due to the lack of information on the effect of the follow-up crops. Therefore, this study was conducted with six biannual rotations (bread wheat–canola, bread wheat–bean, durum wheat–canola, durum wheat–bean, corn–canola and corn–bean) using four residue incorporation levels (0, 50, 100 and 200%) in an Andisol in south central Chile. Grain yield and residue production were evaluated in the canola and bean crops 5 years after initiating crop rotation. The previous crop affected canola grain yield and residue production, which were both higher after corn. Meanwhile, the residue incorporation level had a slight effect on residue production after bread wheat. Only bean grain yield was affected by the previous crop, which was higher after the durum wheat and corn crops. The residue incorporation has marginally affected residue production after bread wheat. Finally, residue incorporation at different levels under the conditions of the present experiment had a minimal effect on bean and canola residue production following the bread wheat crop. The best crop rotation for canola grain yield was corn–canola, which produced 0.54 Mg/ha (18.3%) higher yield than the average of the other two rotations. The best crop rotation for achieving higher bean grain yield was corn–bean, which yielded 0.52 Mg/ha (12.3%) higher than the average of the other two rotations.

Type
Crops and Soils Research Paper
Copyright
Copyright © The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Angus, JF, Kirkegaard, JA, Hunt, JR, Ryan, MH, Ohlander, L and Peoples, MB (2015) Break crops and rotations for wheat. Crop and Pasture Science 66, 523552.CrossRefGoogle Scholar
Basso, B, Shuai, GY, Zhang, JS and Robertson, GP (2019) Yield stability analysis reveals sources of large-scale nitrogen loss from the US Midwest. Scientific Reports 9, 19.CrossRefGoogle ScholarPubMed
Behnke, GD, Zabaloy, MC, Riggins, CW, Rodriguez-Zas, S, Huang, L and Villamil, MB (2020) Acidification in corn monocultures favor fungi, ammonia oxidizing bacteria, and nirK-denitrifier groups. Science of the Total Environment 720, 137514.CrossRefGoogle ScholarPubMed
Chen, X, Mao, A, Zhang, YJ, Zhang, LG, Chang, J, Gao, HJ and Thompson, ML (2017) Carbon and nitrogen forms in soil organic matter influenced by incorporated wheat and corn residues. Soil Science and Plant Nutrition 63, 377387.CrossRefGoogle Scholar
Fang, YT, Ren, T, Zhang, ST, Liu, Y, Liao, SP, Li, XK, Cong, RH and Lu, JW (2021) Rotation with oilseed rape as the winter crop enhances rice yield and improves soil indigenous nutrient supply. Soil and Tillage Research 212, 105065.CrossRefGoogle Scholar
Grahmann, K, Dellepiane, VR, Terra, JA and Quincke, JA (2020) Long-term observations in contrasting crop-pasture rotations over half a century: statistical analysis of chemical soil properties and implications for soil sampling frequency. Agriculture Ecosystems and Environment 287, 106710.CrossRefGoogle Scholar
Hirzel, J, Undurraga, P, Leon, L, Carrasco, J, Gonzalez, J and Matus, I (2021a) Bean production and soil chemical properties are affected by the application of different residue levels from three crop rotations. Archives of Agronomy and Soil Science 68, 12051216.CrossRefGoogle Scholar
Hirzel, J, Undurraga, P, Leon, L, Carrasco, J, Gonzalez, J and Matus, I (2021b) Medium-term crop rotations with different residue incorporation rates: effect on durum wheat production and plant nutrient concentration and extraction. Journal of Soil Science and Plant Nutrition 21, 21452152.CrossRefGoogle Scholar
Hirzel, J, Undurraga, P, Leon, L, Panichini, M, Carrasco, J, Gonzalez, J and Matus, I (2021c) Canola production and effect on soil chemical properties in response to different residue levels from three biannual crop rotations. Plant Production Science 24, 287296.CrossRefGoogle Scholar
Hirzel, J, Undurraga, P, Leon, L, Panichini, M, Carrasco, J, Gonzalez, J and Matus, I (2021d) Durum wheat grain production, grain quality, and plant nutrient concentration in response to different residue levels from two biannual crop rotations. Journal of Plant Nutrition 44, 619628.CrossRefGoogle Scholar
Horvat, D, Simic, G, Drezner, G, Lalic, A, Ledencan, T, Tucak, M, Plavsic, H, Andric, L and Zdunic, Z (2020) Phenolic acid profiles and antioxidant activity of major cereal crops. Antioxidants 9, 527.10.3390/antiox9060527CrossRefGoogle ScholarPubMed
Huynh, HT, Hufnagel, J, Wurbs, A and Bellingrath-Kimura, SD (2019) Influences of soil tillage, irrigation and crop rotation on maize biomass yield in a 9-year field study in Muncheberg, Germany. Field Crops Research 241, 107575.CrossRefGoogle Scholar
Ingraffia, R, Amato, G, Sosa-Hernandez, MA, Frenda, AS, Rillig, MC and Giambalvo, D (2020) Nitrogen type and availability drive mycorrhizal effects on wheat performance, nitrogen uptake and recovery, and production sustainability. Frontiers in Plant Science 11, 760.CrossRefGoogle ScholarPubMed
Karavidas, I, Ntatsi, G, Ntanasi, T, Vlachos, I, Tampakaki, A, Iannetta, PPM and Savvas, D (2020) Comparative assessment of different crop rotation schemes for organic common bean production. Agronomy-Basel 10, 1269.CrossRefGoogle Scholar
Khakbazan, M, Mohr, RM, Huang, JZ, Xie, R, Volkmar, KM, Tomasiewicz, DJ, Moulin, AP, Derksen, DA, Irvine, BR, McLaren, DL and Nelson, A (2019) Effects of crop rotation on energy use efficiency of irrigated potato with cereals, canola, and alfalfa over a 14-year period in Manitoba, Canada. Soil and Tillage Research 195, 104357.CrossRefGoogle Scholar
Kogel-Knabner, I (2002) The macromolecular organic composition of plant and microbial residues as inputs to soil organic matter. Soil Biology and Biochemistry 34, 139162.CrossRefGoogle Scholar
Kumar, M, Kundu, DK, Ghorai, AK, Mitra, S and Singh, SR (2018) Carbon and nitrogen mineralization kinetics as influenced by diversified cropping systems and residue incorporation in Inceptisols of eastern Indo-Gangetic Plain. Soil and Tillage Research 178, 108117.CrossRefGoogle Scholar
Kuzyakov, Y (2002) Review: factors affecting rhizosphere priming effects. Journal of Plant Nutrition and Soil Science 165, 382396.3.0.CO;2-#>CrossRefGoogle Scholar
Lal, R (2016) Soil health and carbon management. Food and Energy Security 5, 212222.10.1002/fes3.96CrossRefGoogle Scholar
Lehmann, J, Kinyangi, J and Solomon, D (2007) Organic matter stabilization in soil microaggregates: implications from spatial heterogeneity of organic carbon contents and carbon forms. Biogeochemistry 85, 4557.CrossRefGoogle Scholar
Manas, P and De Las Heras, J (2018) Nutrient content in wheat grain and straw using sludge and compost from a wastewater treatment plant as a fertiliser. Journal of the Science of Food and Agriculture 98, 47074714.CrossRefGoogle Scholar
Meirelles, FC, Cavalcante, AG, Gonzaga, AR, Filla, VA, Roms, RZ, Coelho, AP, Arf, O and Lemos, LB (2021) Upland rice intercropped with green manures and its impact on the succession with common bean. Journal of Agricultural Science 159, 658667.CrossRefGoogle Scholar
Melander, B, Rasmussen, IA and Olesen, JE (2020) Legacy effects of leguminous green manure crops on the weed seed bank in organic crop rotations. Agriculture Ecosystems and Environment 302, 107078.CrossRefGoogle Scholar
Mganga, KZ and Kuzyakov, Y (2018) Land use and fertilisation affect priming in tropical andosols. European Journal of Soil Biology 87, 916.CrossRefGoogle Scholar
Mingotte, FLC, Jardim, CA, Coelho, AP, Yada, MM, Leal, FT, Souza, SS, Lemos, LB and Fornasieri, D (2021) Crop succession and split-application of nitrogen effects on common bean yield in short no-tillage system. Journal of Agricultural Science 159, 249257.CrossRefGoogle Scholar
Passaris, N, Flower, KC, Ward, PR and Cordingley, N (2021) Effect of crop rotation diversity and windrow burning of residue on soil chemical composition under long-term no-tillage. Soil and Tillage Research 213, 105153.CrossRefGoogle Scholar
Peoples, MB, Swan, AD, Goward, L, Kirkegaard, JA, Hunt, JR, Li, GDD, Schwenke, GD, Herridge, DF, Moodie, M, Wilhelm, N, Potter, T, Denton, MD, Browne, C, Phillips, LA and Khan, DF (2017) Soil mineral nitrogen benefits derived from legumes and comparisons of the apparent recovery of legume or fertiliser nitrogen by wheat. Soil Research 55, 600615.10.1071/SR16330CrossRefGoogle Scholar
Piazza, G, Pellegrino, E, Moscatelli, MC and Ercoli, L (2020) Long-term conservation tillage and nitrogen fertilization effects on soil aggregate distribution, nutrient stocks and enzymatic activities in bulk soil and occluded microaggregates. Soil and Tillage Research 196, 104482.CrossRefGoogle Scholar
Sadzawka, A, Carrasco, M, Grez, R, Mora, M, Flores, H and Neaman, A (2006) Métodos de análisis recomendados para los suelos de Chile. Revisión 2006 Santiago, Chile. Instituto de Investigaciones Agropecuarias. Available at https://hdl.handle.net/20.500.14001/8541 (accessed on January 2022).Google Scholar
Sainju, UM, Lenssen, AW, Allen, BL, Jabro, JD and Stevens, WB (2021) Crop water and nitrogen productivity in response to long-term diversified crop rotations and management systems. Agricultural Water Management 257, 107149.CrossRefGoogle Scholar
Sarker, JR, Singh, BP, Fang, YY, Cowie, AL, Dougherty, WJ, Collins, D, Dalal, RC and Singh, BK (2019) Tillage history and crop residue input enhanced native carbon mineralisation and nutrient supply in contrasting soils under long-term farming systems. Soil and Tillage Research 193, 7184.CrossRefGoogle Scholar
Scott, DA, Eberle, C, Gesch, RW, Schneider, S, Weyers, S and Johnson, JMF (2021) Yield, nitrogen, and water use benefits of diversifying crop rotations with specialty oilseeds. Agriculture Ecosystems and Environment 317, 107472.CrossRefGoogle Scholar
Sietz, D, Conradt, T, Krysanova, V, Hattermann, FF and Wechsung, F (2021) The crop generator: implementing crop rotations to effectively advance eco-hydrological modelling. Agricultural Systems 193, 103183.CrossRefGoogle Scholar
Song, YT, Li, GD and Lowrie, R (2021) Leaf nitrogen and phosphorus resorption improves wheat grain yield in rotation with legume crops in south-eastern Australia. Soil and Tillage Research 209, 104978.CrossRefGoogle Scholar
Stagnari, F, Galieni, A, D'Egidio, S, Falcinelli, B, Pagnani, G, Pace, R, Pisante, M and Benincasa, P (2017) Effects of sprouting and salt stress on polyphenol composition and antiradical activity of einkorn, emmer and durum wheat. Italian Journal of Agronomy 12, 293301.Google Scholar
Taveira, CJ, Farrell, RE, Wagner-Riddle, C, Machado, PVF, Deen, B and Congreves, KA (2020) Tracing crop residue N into subsequent crops: insight from long-term crop rotations that vary in diversity. Field Crops Research 255, 107904.CrossRefGoogle Scholar
Xiao, CW, Guenet, B, Zhou, Y, Su, JQ and Janssens, IA (2015) Priming of soil organic matter decomposition scales linearly with microbial biomass response to litter input in steppe vegetation. Oikos 124, 649657.CrossRefGoogle Scholar
Xiao, GJ, Guo, ZQ, Qiang, Z, Hu, YB, Jing, W, Jin, C and Qiu, ZJ (2020) Warming affects water use, yield and crop quality of a potato-broad bean-winter wheat rotation system in semi-arid regions of China. Journal of Agricultural Science 158, 543557.Google Scholar
Yang, L, Song, M, Zhu, AX, Qin, CZ, Zhou, CH, Qi, F, Li, XM, Chen, ZY and Gao, BB (2019) Predicting soil organic carbon content in croplands using crop rotation and Fourier transform decomposed variables. Geoderma 340, 289302.CrossRefGoogle Scholar