Skip to main content Accesibility Help
×
×
Home

Effects of the comminution rate and microbial contamination of particles in the rumen on accuracy of in situ estimates of digestion of protein and amino acids of dehydrated sugar beet pulp

  • J. GONZÁLEZ (a1), J. M. ARROYO (a1), J. A. GUEVARA-GONZÁLEZ (a1), R. MOUBI (a1), O. PIQUER (a2) and V. J. MOYA (a3)...
Summary

Effects of the correction of microbial contamination (using 15N techniques) and of considering the comminution rate (kc) of particles in the rumen on effective estimates of the ruminally undegraded (RU) fraction and its intestinal effective digestibility (IED) were examined in a sample of dehydrated sugar beet pulp (DBP) generating composite samples (from rumen-incubated residues) representative of the chemical composition of RU. Tested fractions were dry matter (DM), organic matter (OM, tested only for RU), crude protein (CP) and amino acids (AA). The study was performed on three rumen and duodenum cannulated wethers fed with a 2 : 1 (fresh weight basis) chopped oat hay-to-concentrate diet supplied at 40 g DM/kg BW0·75 in six equal meals per day. The DBP showed sigmoid degradation kinetics: the fractional degradation rate increased by 5·8 times as time (h) increased from 0 to . The kc rate (measured in the diet concentrate) represented 5·74% of the total rumen retention time of particles. As a result, the RU of DM was over-evaluated by 6·53% when kc was not considered. Microbial contamination of RU was high as in DM as in CP. Therefore, the overestimation of RU of DM was increased to 12·2% when this contamination was not corrected. The lack of this correction also led to large over-evaluations of RU and IED of CP and AA. As a result, the overestimation of the intestinal digested fraction was 40·9% for CP and 45·0% for total analysed AA. This overestimation varied largely among AA (from 18·9 to 88·7%). Corrected proportions of RU and IED were also variable among AA. Hypotheses on the causes of this variability are given. Resultant changes in the AA profile of the intestinal digested protein had some negative impact on the supply of essential AA and cysteine without affecting lysine. This problem is limited because the microbial protein synthesized from DBP fermentation in the rumen is largely predominant in the AA supply to the host.

Copyright
Corresponding author
*To whom all correspondence should be addressed. Email: javier.gonzalez@upm.es
References
Hide All
Alcaide, E. M., García, A. I. M. & Aguilera, J. F. (2000). A comparative study of nutrient digestibility, kinetics of degradation and passage and rumen fermentation pattern in goats and sheep offered good quality diets. Livestock Production Science 64, 215223.
AOAC (2000). Official Methods of Analysis 17th edition. Gaithersburg, MD: AOAC.
Arroyo, J. M. & González, J. (2013). Effects of the ruminal comminution rate and microbial contamination of particles on accuracy of in situ estimates of ruminal degradability and intestinal digestibility of feedstuffs. Journal of Animal Physiology and Animal Nutrition 97, 109118.
Barrie, A., Brookes, S. T., Prosser, S. J. & Debney, S. (1995). High productivity analysis of 15N and 13C in soil/plant research. Fertilizer research 42, 4359.
Bernard, L., Marvalin, O., Yang, W. Z. & Poncet, C. (1988). Colonisation bacterienne de different types d'aliments incubes in sacco dans le rumen; consequences pour l'estimation de la dégradabilité de l'azote. Reproduction Nutrition Development 28 (Suppl. 1), 105106.
BOE (2007). Ley 32/2007 de 7 de Noviembre para el cuidado de los animales, en su explotación, transporte, experimentación y sacrificio. Boletín Oficial del Estado (BOE) 268, 4591445920.
CVB (2002). Central Veevoederbureau. Veevodertabel (Dutch Feeding Tables). Lelystad, the Netherlands: Central Veevoederbureau.
Dhanoa, M. S., Siddons, R. C., France, J. & Gale, D. L. (1985). A multicompartmental model to describe marker excretion patterns in ruminant faeces. British Journal of Nutrition 53, 663671.
Ellis, W., Matis, J. H. & Lascano, C. (1979). Quantitating ruminal turnover. Federation Proceedings 38, 27022706.
Gómez, G. (1997). Degradabilidad ruminal de las materias nitrogenadas de los ensilados de hierba y de maiz. PhD Thesis, Universidad Politécnica de Madrid, Madrid, Spain.
González, J., Ouarti, M., Rodríguez, C. A. & Alvir, M. R. (2006). Effects of considering the rate of comminution of particles and microbial contamination on accuracy of in situ studies of feed protein degradability in ruminants. Animal Feed Science and Technology 125, 8998.
González, J., Ouarti, M., Rodríguez, C. A. & Centeno, C. (2009). A simplified management of the in situ evaluation of feedstuffs in ruminants: application to the study of the digestive availability of protein and amino acids corrected for the ruminal microbial contamination. Archives of Animal Nutrition 63, 304320.
González, J., Faría-Marmol, J., Arroyo, J. M., Centeno, C. & Martínez, A. (2010). Effects of ensiling on in situ ruminal degradability and intestinal digestibility of corn forage. Archives of Animal Nutrition 64, 204220.
Grenet, E. & Barry, P. (1990). In vivo and in sacco digestibility and rumen microbial degradation of cell walls of soyabean and rape integuments and of dehydrated beet pulp in sheep, observed by scanning electron microscopy. Journal of Agricultural Science, Cambridge 115, 429435.
INRA (2007). Alimentation des Bovins, Ovins et Caprins – Besoins des Animaux – Valeurs des Aliments – Tables INRA 2007. Versailles, France: Quae.
Li, X. B., Kieliszewski, M. & Lamport, D. T. A. (1990). A chenopod extensin lacks repetitive tetrahydroxyproline blocks. Plant Physiology 92, 327333.
Liu, H. J., Chang, B. Y., Yan, H. W., Yu, F. H. & Liu, X. X. (1995). Determination of amino acids in food and feed by derivatization with 6-aminoquinolyl-Nhydroxysuccinimidyl carbamate and reverse-phase liquid chromatographic separation. Journal of AOAC International 78, 736744.
Madsen, J. & Hvelplund, T. (1985). Protein degradation in the rumen. A comparison between in vivo, nylon bag, in vitro and buffer measurements. Acta Agriculturae Scandinavica 25 (Suppl.), 103124.
Mahadevan, S., Erfle, J. D. & Sauer, F. D. (1980). Degradation of soluble and insoluble proteins by Bacteroides amylophilus protease and by rumen microorganisms. Journal of Animal Science 50, 723728.
NRC (2001). Nutrient Requirements of Dairy Cattle. Washington, DC: National Academy Press.
Pereira, J. C. & González, J. (2004). Rumen degradability of dehydrated beet pulp and dehydrated citrus pulp. Animal Research 53, 99110.
Redshaw, M. S., Flicker, J., Fontaine, J., Heimbeck, W. & Hess, V. (2010). Expect the Best-AminoDat® 4.0. Essen, Germany: Evonik¸ Degussa, GmbH, Health and Nutrition.
Robertson, J. B. & Van Soest, P. J. (1981). The detergent system of analysis and its application to human foods. In The Analysis of Dietary Fiber in Food (Eds James, W. P. T. & Theander, O.), pp. 123158. New York: Marcel Dekker Inc.
Rodríguez, C. A. & González, J. (2006). In situ study of the relevance of bacterial adherence to feed particles on the contamination and accuracy of rumen degradability estimates of feeds of vegetable origin. British Journal of Nutrition 96, 316325.
Rodríguez, C. A., González, J., Alvir, M. R., Repetto, J. L., Centeno, C. & Lamrani, F. (2000). Composition of bacteria harvested from the liquid and solid fractions of the rumen of sheep as influenced by feed intake. British Journal of Nutrition 84, 369376.
SAS Institute (1990). SAS/STAT® User's Guide, vols. I and II, Version 6. 4th edn. Cary, NC: SAS Institute Inc.
Sauvant, D., Perez, J. M. & Tran, G. (2002). Tables de Composition et de Valeur Nutritive des Matières Premières Festinées aux Animaux d’Élevage: Porcs, Volailles, Bovins, Ovins, Caprins, Lapins, Chevaux, Poissons. Paris, France: INRA.
Showalter, A. M. (1993). Structure and function of plant cell wall proteins. Plant Cell 5, 923.
Udén, P., Colucci, P. E. & Van Soest, P. J. (1980). Investigation of chromium, cerium and cobalt as markers in digesta. Rate of passage studies. Journal of the Science of Food and Agriculture 31, 625632.
Van Milgen, J. & Baumont, R. (1995). Models based on variable fractional digestion rates to describe ruminal in situ digestion. British Journal of Nutrition 73, 793807.
Van Milgen, J., Murphy, M. R. & Berger, L. L. (1991). A compartmental model to analyze ruminal digestion. Journal of Dairy Science 74, 25152529.
Van Soest, P. J. (1994). Nutritional Ecology of the Ruminant. 2nd edn. Ithaca, NY: Cornell University Press.
Van Soest, P. J., Robertson, J. B. & Lewis, B. A. (1991). Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. Journal of Dairy Science 74, 35833597.
Vérité, R. (1987). Present situation of protein evaluation for ruminants in France: the PDI system. In Feed Evaluation and Protein Requirement Systems for Ruminants (Eds Jarrige, R. & Alderman, G.), pp. 1120. Brussels, Luxembourg: Commission of the European Communities.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

The Journal of Agricultural Science
  • ISSN: 0021-8596
  • EISSN: 1469-5146
  • URL: /core/journals/journal-of-agricultural-science
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed