Skip to main content

Emissions of nitrous oxide and ammonia from a sandy soil following surface application and incorporation of cauliflower leaf residues

  • L. NETT (a1), R. FUß (a2), H. FLESSA (a2) and M. FINK (a1)

Vegetable production systems are often characterized by excessive nitrogen (N) fertilization and the incorporation of large amounts of post-harvest crop residues. This makes them particularly prone to ammonia (NH3) and nitrous oxide (N2O) emissions. Yet, urgently needed management strategies that can reduce these harmful emissions are missing, because underlying processes are not fully understood. The present study therefore focuses on the effects of residue placement on NH3 and N2O emissions. For this, cauliflower leaf residues (286 kg N/ha) were either applied as surface mulch (mulch) or mixed with the topsoil (mix) and in situ NH3 and N2O emissions were investigated. The experiment took place on a sandy soil in Northeastern Germany during summer 2012. Residue application created a high peak in N2O emissions during the first 2 weeks, irrespective of residue placement. There was no significant difference in the emission sums over the experimental period (65 days) between the mix (5·8 ± 0·68 kg N2O-N/ha) and the mulch (9·7 ± 1·53 kg N2O-N/ha) treatment. This was also the case for NH3 emissions, which exhibited a lower initial peak followed by a prolonged decline. Measured emission sums were 4·1 ± 0·33 (mix) and 5·1 ± 0·73 (mulch) kg NH3-N/ha. It was concluded that substantial NH3 and N2O emissions can occur after high input of available organic carbon and N even in a coarse-textured soil with low water-holding capacity. Other than expected, surface-application does not enhance NH3 emissions at the expense of N2O emissions compared with residue mixing into the soil, at least under the conditions of the present study.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Emissions of nitrous oxide and ammonia from a sandy soil following surface application and incorporation of cauliflower leaf residues
      Available formats
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Emissions of nitrous oxide and ammonia from a sandy soil following surface application and incorporation of cauliflower leaf residues
      Available formats
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Emissions of nitrous oxide and ammonia from a sandy soil following surface application and incorporation of cauliflower leaf residues
      Available formats
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (, which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
Corresponding author
* To whom all correspondence should be addressed. Email:
Hide All
Azam, F., Müller, C., Weiske, A., Benckiser, G. & Ottow, J. C. G. (2002). Nitrification and denitrification as sources of atmospheric nitrous oxide – role of oxidizable carbon and applied nitrogen. Biology and Fertility of Soils 35, 5461.
Baggs, E. M. (2008). A review of stable isotope techniques for N2O source partitioning in soils: recent progress, remaining challenges and future considerations. Rapid Communications in Mass Spectrometry 22, 16641672.
Baggs, E. M., Rees, R. M., Smith, K. A. & Vinten, A. J. A. (2000). Nitrous oxide emission from soils after incorporating crop residues. Soil Use and Management 16, 8287.
Baggs, E. M., Stevenson, M., Pihlatie, M., Regar, A., Cook, H. & Cadisch, G. (2003). Nitrous oxide emissions following application of residues and fertilizer under zero and conventional tillage. Plant and Soil 254, 361370.
Bateman, E. J. & Baggs, E. M. (2005). Contributions of nitrification and denitrification to N2O emissions from soils at different water-filled pore space. Biology and Fertility of Soils 41, 379388.
Chen, H., Li, X., Hu, F. & Shi, W. (2013). Soil nitrous oxide emissions following crop residue addition: a meta-analysis. Global Change Biology 19, 29562964.
Davidson, E. A., Keller, M., Erickson, H. E., Verchot, L. V. & Veldkamp, E. (2000). Testing a conceptual model of soil emissions of nitrous and nitric oxides. BioScience 50, 667680.
de Ruijter, F. J., Huijsmans, J. F. M. & Rutgers, B. (2010 a). Ammonia volatilization from crop residues and frozen green manure crops. Atmospheric Environment 44, 33623368.
de Ruijter, F. J., ten Berge, H. F. M. & Smit, A. L. (2010 b). The fate of nitrogen from crop residues of broccoli, leek and sugar beet. Acta Horticulturae 852, 157161.
Delgado, J. A., Del Grosso, S. J. & Ogle, S. M. (2010). 15N isotopic crop residue cycling studies and modeling suggest that IPCC methodologies to assess residue contributions to N2O-N emissions should be reevaluated. Nutrient Cycling in Agroecosystems 86, 383390.
Escobar, L. F., Amado, T. J. C., Bayer, C., Chavez, L. F., Zanatta, J. A. & Fiorin, J. E. (2010). Postharvest nitrous oxide emissions from a subtropical oxisol as influenced by summer crop residues and their management. Revista Brasileira de Ciência do Solo 34, 435442.
Feller, C., Fink, M., Laber, H., Maync, A., Paschold, P., Scharpf, H. C., Schlaghecken, J., Strohmeyer, K., Weier, U. & Ziegler, J. (2010). Düngung im Freilandgemüsebau, 3rd edn., Issue 4. Schriftenreihe des Leibniz-Instituts für Gemüse- und Zierpflanzenbau (IGZ). Großbeeren, Germany: IGZ.
Flessa, H. & Beese, F. (1995). Effects of sugarbeet residues on soil redox potential and nitrous oxide emission. Soil Science Society of America Journal 59, 10441051.
Flessa, H., Potthoff, M. & Loftfield, N. (2002). Greenhouse estimates of CO2 and N2O emissions following surface application of grass mulch: importance of indigenous microflora of mulch. Soil Biology and Biochemistry 34, 875879.
Forster, P., Ramaswamy, V., Artaxo, P., Berntsen, T., Betts, R., Fahey, D. W., Haywood, J., Lean, J., Lowe, D. C., Myhre, G., Nganga, J., Prinn, R., Raga, G., Schulz, M. & Van Dorland, R. (2007). Changes in atmospheric constituents and in radiative forcing. In Climate change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (Eds Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K. B., Tignor, M. & Miller, H. L.), pp. 131234. Cambridge, UK and New York, USA: Cambridge University Press.
Frimpong, K. A. & Baggs, E. M. (2010). Do combined applications of crop residues and inorganic fertilizer lower emission of N2O from soil? Soil Use and Management 26, 412424.
Galloway, J. N., Dentener, F. J., Capone, D. G., Boyer, E. W., Howarth, R. W., Seitzinger, S. P., Asner, G. P., Cleveland, C. C., Green, P. A., Holland, E. A., Karl, D. M., Michaels, A. F., Porter, J. H., Townsend, A. R. & Vorosmarty, C. J. (2004). Nitrogen cycles: past, present, and future. Biogeochemistry 70, 153226.
Glasener, K. M. & Palm, C. A. (1995). Ammonia volatilization from tropical legume mulches and green manures on unlimed and limed soils. Plant and Soil 177, 3341.
Harrison, R., Ellis, S., Cross, R. & Hodgson, J. H. (2002). Emissions of nitrous oxide and nitric oxide associated with the decomposition of arable crop residues on a sandy loam soil in Eastern England. Agronomie 22, 731738.
Huang, Y., Zou, J. W., Zheng, X. H., Wang, Y. S. & Xu, X. K. (2004). Nitrous oxide emissions as influenced by amendment of plant residues with different C:N ratios. Soil Biology and Biochemistry 36, 973981.
Huber, P. J. (1981). Robust Statistics. New York: John Wiley & Sons, Inc.
IPCC (2006). 2006 IPCC Guidelines for National Greenhouse Gas Inventories Volume 4: Agriculture, Forestry and Other Land Use (Eds Eggleston, H. S., Buendia, L., Miwa, K., Ngara, T., & Tanabe, K.). Japan: IGES.
Janzen, H. H. & McGinn, S. M. (1991). Volatile loss of nitrogen during decomposition of legume green manure. Soil Biology and Biochemistry 23, 291297.
Kaiser, E. A. & Ruser, R. (2000). Nitrous oxide emissions from arable soils in Germany – an evaluation of six long-term field experiments. Journal of Plant Nutrition and Soil Science 163, 249259.
Kimber, R. W. L. (1973). Phytotoxicity from plant residues II. The effect of time of rotting of straw from some grasses and legumes on the growth of wheat seedlings. Plant and Soil 38, 347361.
Koga, N. (2013). Nitrous oxide emissions under a four-year crop rotation system in northern Japan: impacts of reduced tillage, composted cattle manure application and increased plant residue input. Soil Science and Plant Nutrition 59, 5668.
Kuylenstierna, J. C. I., Hicks, W. K., Cinderby, S. & Cambridge, H. (1998). Critical loads for nitrogen deposition and their exceedance at European scale. Environmental Pollution 102 (Suppl 1), 591598.
Larsson, L., Ferm, M., Kasimir-Klemedtsson, A. & Klemedtsson, L. (1998). Ammonia and nitrous oxide emissions from grass and alfalfa mulches. Nutrient Cycling in Agroecosystems 51, 4146.
Loftfield, N., Flessa, H., Augustin, J. & Beese, F. (1997). Automated gas chromatographic system for rapid analysis of the atmospheric trace gases methane, carbon dioxide, and nitrous oxide. Journal of Environmental Quality 26, 560564.
Mohr, R. M., Janzen, H. H. & Entz, M. H. (1998). Nitrogen dynamics under greenhouse conditions as influenced by method of alfalfa termination. 1. Volatile N losses. Canadian Journal of Soil Science 78, 253259.
Nett, L., Feller, C., George, E. & Fink, M. (2011). Effect of winter catch crops on nitrogen surplus in intensive vegetable crop rotations. Nutrient Cycling in Agroecosystems 91, 327337.
Ni, J. Q. (1999). Mechanistic models of ammonia release from liquid manure: a review. Journal of Agricultural Engineering Research 72, 117.
Novoa, R. S. A. & Tejeda, H. R. (2006). Evaluation of the N2O emissions from N in plant residues as affected by environmental and management factors. Nutrient Cycling in Agroecosystems 75, 2946.
Pacholski, A., Cai, G., Fan, X., Ding, H., Chen, D., Nieder, R. & Roelcke, M. (2008). Comparison of different methods for the measurement of ammonia voltatilization after urea application in Henan Province, China. Journal of Plant Nutrition and Soil Science 171, 361369.
Parkin, T. B. & Venterea, R. T. (2010). Chamber-based trace gas flux measurements. In Sampling Protocols (ed. Follett, R. F.), pp. 3–1 to 339. Washington, D.C.: USDA. Available online from: (accessed December 2014).
R Development Core Team (2013). R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing.
Ravishankara, A. R., Daniel, J. S. & Portmann, R. W. (2009). Nitrous oxide (N2O): the dominant ozone-depleting substance emitted in the 21st century. Science 326, 123125.
Rizhiya, E. Y., Boitsova, L. V., Buchkina, N. P. & Panova, G. G. (2011). The influence of crop residues with different C: N ratios on the N2O emission from a loamy sand soddy-podzolic soil. Eurasian Soil Science 44, 11441151.
Robertson, G. P. & Vitousek, P. M. (2009). Nitrogen in agriculture: balancing the cost of an essential resource. Annual Review of Environment and Resources 34, 97125.
Ruser, R., Sehy, U., Buegger, F. & Munch, J. C. (2009). N2O fluxes from a high and low yield area after incorporation of 15labeled mustard. In Connecting Different Scales of Nitrogen Use in Agriculture: Proceedings of the 16th Nitrogen Workshop, 28 June – 1 July 2009, Turin, Italy (Eds Grignani, C., Acustis, M., Zavattaro, L., Bechini, L., Bertora, C., Marino Gallina, P. & Sacco, D.), pp. 205206. Turin, Italy: University of Turin & University of Milan.
Toma, Y. & Hatano, R. (2007). Effect of crop residue C:N ratio on N2O emissions from Gray Lowland soil in Mikasa, Hokkaido, Japan. Soil Science and Plant Nutrition 53, 198205.
Velthof, G. L., Kuikman, P. J. & Oenema, O. (2002). Nitrous oxide emission from soils amended with crop residues. Nutrient Cycling in Agroecosystems 62, 249261.
Wrage, N., Velthof, G. L., van Beusichem, M. L. & Oenema, O. (2001). Role of nitrifier denitrification in the production of nitrous oxide. Soil Biology and Biochemistry 33, 17231732.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

The Journal of Agricultural Science
  • ISSN: 0021-8596
  • EISSN: 1469-5146
  • URL: /core/journals/journal-of-agricultural-science
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed