Skip to main content Accessibility help
×
×
Home

Future climate scenarios project a decrease in the risk of fall armyworm outbreaks

  • N. Y. Z. RAMIREZ-CABRAL (a1) (a2), L. KUMAR (a1) and F. SHABANI (a1)
Summary

Spodoptera frugiperda, or the fall armyworm (FAW) (Lepidoptera: Noctuidae), is an endemic and important agricultural pest in America. Several outbreaks have occurred with losses estimated at millions of dollars. Insects are affected by climate factors, and climate change may affect geographical range, growth rate, abundance, survival, mortality, number of generations per year and other characteristics. These effects are difficult to project due to the complex interactions among insects, hosts and predators. The aim of the current research is to project the impact of climate change on future suitability for the expansion and final range of FAW as well as highlight the risk of damage due to the pest under current and future conditions. The modelling was carried out using two general circulation models (GCMs), CSIRO Mk3.0 and MIROC-H, for 2050 and 2100 under the A2 Special Report on Emissions Scenarios (SRES), using the known distribution of the species and the CliMond meteorological database. The possible number of generations was estimated to exceed five in the south-eastern USA by 2100. A unique modelling approach linking environmental suitability and number of generations was developed to project the risks of FAW damage. The results show changes in suitability and risk across America, with an increase in the northern hemisphere and decreases or extinction in the southern hemisphere, except for southern Brazil, Uruguay, Paraguay and northern Argentina, which indicate high future levels of risk. The current study highlights the possible extinction of a tropical pest in areas near the Equator. The two GCMs both projected increases in the low-risk category of 40% by 2050 and 23% by 2100, with the medium- and high-risk categories decreasing by >50% by 2050 and >39% by 2100, compared with the current risk. In general, agricultural pest management may become more challenging under future climate change and variation, and thus, understanding and quantifying the possible impacts of FAW under future climate conditions is essential for the future economic production of crops.

Copyright
Corresponding author
*To whom all correspondence should be addressed. Email: nramirez@myune.edu.au; nadiezhda.cabral@gmail.com
References
Hide All
Allen, C. D., Macalady, A. K., Chenchouni, H., Bachelet, D., McDowell, N., Vennetier, M., Kitzberger, T., Rigling, A., Breshears, D. D. & Hogg, E. T. (2010). A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. Forest Ecology and Management 259, 660684.
Altermatt, F. (2010). Climatic warming increases voltinism in European butterflies and moths. Proceedings of the Royal Society B: Biological Sciences 277, 12811287.
Andrews, K. L. (1980). The whorlworm, Spodoptera frugiperda, in Central America and neighboring areas. Florida Entomologist 63, 456467.
Andrews, K. L. (1988). Latin American research on Spodoptera frugiperda (Lepidoptera: Noctuidae). Florida Entomologist 71, 630653.
Ashley, T. R. (1986). Geographical distribution and parasitization levels for parasitoids of the fall armyworm, Spodoptera frugiperda . The Florida Entomologist 69, 516524.
Ayres, M. P. & Lombardero, M. J. (2000). Assessing the consequences of global change for forest disturbance from herbivores and pathogens. Science of the Total Environment 262, 263286.
Baker, R. H. A., Sansford, C. E., Jarvis, C. H., Cannon, R. J. C., MacLeod, A. & Walters, K. F. A. (2000). The role of climatic mapping in predicting the potential geographical distribution of non-indigenous pests under current and future climates. Agriculture, Ecosystems & Environment 82, 5771.
Bale, J. S., Masters, G. J., Hodkinson, I. D., Awmack, C., Bezemer, T. M., Brown, V. K., Butterfield, J., Buse, A., Coulson, J. C., Farrar, J., Good, J. E. G., Harrington, R., Hartley, S., Jones, T. H., Lindroth, R. L., Press, M. C., Symrnioudis, I., Watt, A. D. & Whittaker, J. B. (2002). Herbivory in global climate change research: direct effects of rising temperature on insect herbivores. Global Change Biology 8, 116.
Barfield, C. S. & Ashley, T. R. (1987). Effects of corn phenology and temperature on the life cycle of the fall armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae). Florida Entomologist 70, 110116.
Barfield, C. S. & Jones, J. W. (1979). Research needs for modeling pest management systems involving defoliators in agronomic crop systems. Florida Entomologist 62, 98114.
Barfield, C. S., Mitchell, E. R. & Poe, S. L. (1978). A temperature-dependent model for fall armyworm development. Annals of the Entomological Society of America 71, 7074.
Bentz, B. J., Régnière, J., Fettig, C. J., Hansen, E. M., Hayes, J. L., Hicke, J. A., Kelsey, R. G., Negrón, J. F. & Seybold, S. J. (2010). Climate change and bark beetles of the western United States and Canada: direct and indirect effects. BioScience 60, 602613.
Beserra, E. B., Dias, C. T. D. S. & Parra, J. R. P. (2002). Distribution and natural parasitism of Spodoptera frugiperda (Lepidoptera: Noctuidae) eggs at different phenological stages of corn. Florida Entomologist 85, 588593.
Boggs, C. L. (2016). The fingerprints of global climate change on insect populations. Current Opinion in Insect Science 17, 6973.
Bourdôt, G. W., Lamoureaux, S. L., Watt, M. S., Manning, L. K. & Kriticos, D. J. (2012). The potential global distribution of the invasive weed Nassella neesiana under current and future climates. Biological Invasions 14, 15451556.
Bradshaw, W. E. & Holzapfel, C. M. (2006). Evolutionary response to rapid climate change. Science 312, 14771478.
Cannon, R. J. C. (1998). The implications of predicted climate change for insect pests in the UK, with emphasis on non-indigenous species. Global Change Biology 4, 785796.
Casmuz, A., Juárez, M. L., Socías, M. G., Murúa, M. G., Prieto, S., Medina, S., Willink, E. & Gastaminza, G. (2010). Revisión de los hospederos del gusano cogollero del maíz, Spodoptera frugiperda (Lepidoptera: Noctuidae). Revista de la Sociedad Entomologica Argentina 69, 209231.
Chacón-Castro, Y., Garita-Rojas, C., Vaglio-Cedeña, C. & Villalba-Velásquez, V. (2009). Desarrollo de una metodología de crianza en laboratorio del gusano cogollero del maíz Spodoptera frugiperda (Smith) (Lepidoptera: Noctuidae) como posible hospedante de insectos biocontroladores de interés agrícola. Revista Tecnología en Marcha 22, 2837.
Cheng, J., Wan, F. & Guo, J. (2006). Potential distribution of Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae) in China by using combined CLIMEX and GIS Tools [J]. Scientia Agricultura Sinica 39, 525.
Clark, P. L., Molina-Ochoa, J., Martinelli, S., Skoda, S. R., Isenhour, D. J., Lee, D. J., Krumm, J. T. & Foster, J. E. (2007). Population variation of the fall armyworm, Spodoptera frugiperda, in the Western Hemisphere. Journal of Insect Science 7, 5. doi: 10.1673/031.007.0501.
Clavijo, A., Badillo, A., Ramírez, A., Delgado, A. & Lathullerie, J. (1991). Influencia de la temperatura sobre el desarollo de Spodoptera frugiperda (Smith) (Lepidoptera: Noctuidae). Agronomía Tropical 41, 245256.
Coope, G. R. (1970). Interpretations of quaternary insect fossils. Annual Review of Entomology 15, 97121.
Cortez-Mondaca, E., Pérez-Márquez, J. & Bahena-Juárez, F. (2012). Control biológico natural de gusano cogollero 1 (Lepidoptera: Noctuidae) en maíz y en sorgo, en el norte de Sinaloa, México. Southwestern Entomologist 37, 423428.
Crozier, L. & Dwyer, G. (2006). Combining population-dynamic and ecophysiological models to predict climate-induced insect range shifts. The American Naturalist 167, 853866.
Deutsch, C. A., Tewksbury, J. J., Huey, R. B., Sheldon, K. S., Ghalambor, C. K., Haak, D. C. & Martin, P. R. (2008). Impacts of climate warming on terrestrial ectotherms across latitude. Proceedings of the National Academy of Sciences 105, 66686672.
Diffenbaugh, N. S., Krupke, C. H., White, M. A. & Alexander, C. E. (2008). Global warming presents new challenges for maize pest management. Environmental Research Letters 3, 044007. doi: 10.1088/1748-9326/3/4/044007.
Elith, J. & Leathwick, J. R. (2009). Species distribution models: ecological explanation and prediction across space and time. Annual Review of Ecology, Evolution, and Systematics 40, 677697.
Elith, J., Phillips, S. J., Hastie, T., Dudík, M., Chee, Y. E. & Yates, C. J. (2011). A statistical explanation of MaxEnt for ecologists. Diversity and Distributions 17, 4357.
Farias, P. R. S., Barbosa, J. C., Busoli, A. C., Overal, W. L., Miranda, V. S. & Ribeiro, S. M. (2008). Spatial analysis of the distribution of Spodoptera frugiperda (JE Smith) (Lepidoptera: Noctuidae) and losses in maize crop productivity using geostatistics. Neotropical Entomology 37, 321327.
Foster, R. E. & Cherry, R. H. (1987). Survival of fall Armyworm, Spodoptera frugiperda, (Lepidoptera: Noctuidae) exposed to cold temperatures. Florida Entomologist 70, 419422.
Fuhrer, J. (2003). Agroecosystem responses to combinations of elevated CO2, ozone, and global climate change. Agriculture, Ecosystems & Environment 97, 120.
GBIF (2017). The Global Biodiversity Information Facility. Copenhagen, Denmark: GBIF. Available online from: http://www.gbif.org/ (verified 3 April 2017).
Gordon, H., O'Farrell, S., Collier, M., Dix, M., Rotstayn, L., Kowalczyk, E., Hirst, T. & Watterson, I. (2010). The CSIRO Mk3.5 Climate Model. CAWCR Technical Report No. 021. Melbourne, Australia: Centre for Australian Weather and Climate Research.
Harrison, F. P. (1984). The development of an economic injury level for low populations of fall armyworm (Lepidoptera: Noctuidae) in grain corn. Florida Entomologist 67, 335339.
Helmuth, B., Harley, C. D. G., Halpin, P. M., O'Donnell, M., Hofmann, G. E. & Blanchette, C. A. (2002). Climate change and latitudinal patterns of intertidal thermal stress. Science 298, 10151017.
Hernández-Mendoza, J. L., López-Barbosa, E. C., Garza-González, E. & Mayek-Pérez, N. (2008). Spatial distribution of Spodoptera frugiperda (Lepidoptera: Noctuidae) in maize landraces grown in Colima, México. International Journal of Tropical Insect Science 28, 126129.
Hong, S. C., Obear, G. R., Liesch, P. J., Held, D. W. & Williamson, R. C. (2015). Suitability of creeping bentgrass and bermudagrass cultivars for black cutworms and fall armyworms (Lepidoptera: Noctuidae). Journal of Economic Entomology 108, 19541960.
IPCC (2007). Climate change 2007: the physical science basis. In Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (Eds Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K., Tignor, M. M. & Miller, H. L.). Cambridge, UK: Cambridge University Press.
Karuppaiah, V. & Sujayanad, G. (2012). Impact of climate change on population dynamics of insect pests. World Journal of Agricultural Sciences 8, 240246.
Kennedy, G. G. & Storer, N. P. (2000). Life systems of polyphagous arthropod pests in temporally unstable cropping systems. Annual Review of Entomology 45, 467493.
Kriticos, D. J., Watt, M. S., Potter, K. J. B., Manning, L. K., Alexander, N. S. & Tallent-Halsell, N. (2011). Managing invasive weeds under climate change: considering the current and potential future distribution of Buddleja davidii . Weed Research 51, 8596.
Kriticos, D. J., Reynaud, P., Baker, R. H. A. & Eyre, D. (2012 a). Estimating the global area of potential establishment for the western corn rootworm (Diabrotica virgifera virgifera) under rain-fed and irrigated agriculture. EPPO Bulletin 42, 5664.
Kriticos, D. J., Webber, B. L., Leriche, A., Ota, N., Macadam, I., Bathols, J. & Scott, J. K. (2012 b). CliMond: global high-resolution historical and future scenario climate surfaces for bioclimatic modelling. Methods in Ecology and Evolution 3, 5364.
Kriticos, D. J., Murphy, H. T., Jovanovic, T., Taylor, J., Herr, A., Raison, J. & O'Connell, D. (2014). Balancing bioenergy and biosecurity policies: estimating current and future climate suitability patterns for a bioenergy crop. Global Change Biology: Bioenergy 6, 587598.
Kriticos, D. J., Maywald, G. F., Yonow, T., Zurcher, E. J., Herrmann, N. I. & Sutherst, R. W. (2015 a). CLIMEX Version 4: Exploring the Effects of Climate on Plants, Animals and Diseases. Canberra, Australia: CSIRO.
Kriticos, D. J., Ota, N., Hutchison, W. D., Beddow, J., Walsh, T., Tay, W. T., Borchert, D. M., Paula-Moraes, S. V., Czepak, C. & Zalucki, M. P. (2015 b). The potential distribution of invading Helicoverpa armigera in North America: is it just a matter of time? PLoS ONE 10, e0119618. doi:10.1371/journal.pone.0119618.
Luginbill, P. (1928). The Fall Army Worm. Washington, DC: USDA.
Maes, D., Titeux, N., Hortal, J., Anselin, A., Decleer, K., De Knijf, G., Fichefet, V. & Luoto, M. (2010). Predicted insect diversity declines under climate change in an already impoverished region. Journal of Insect Conservation 14, 485498.
Maxino, C. C., McAvaney, B. J., Pitman, A. J. & Perkins, S. E. (2008). Ranking the AR4 climate models over the Murray-Darling Basin using simulated maximum temperature, minimum temperature and precipitation. International Journal of Climatology 28, 10971112.
Meynard, C. N., Migeon, A. & Navajas, M. (2013). Uncertainties in predicting species distributions under climate change: a case study using Tetranychus evansi (Acari: Tetranychidae), a widespread agricultural pest. PLoS ONE 8, e66445. doi:10.1371/journal.pone.0066445.
Mitchell, E. R., McNeil, J. N., Westbrook, J. K., Silvain, J.-F., Lalanne-Cassou, B., Chalfant, R. B., Pair, S. D., Waddill, V. H., Sotomayor-Rios, A. & Proshold, F. I. (1991). Seasonal periodicity of fall armyworm (Lepidoptera: Noctuidae) in the Caribbean basin and northward to Canada. Journal of Entomological Science 26, 3950.
Morrill, W. L. (1971). Ecology, Economics and Behavior of the Fall Armyworm in Field Corn . Ph.D. Disertation, University of Florida, USA.
Muñoz, J. & Felicísimo, Á. M. (2004). Comparison of statistical methods commonly used in predictive modelling. Journal of Vegetation Science 15, 285292.
Murúa, M. G. & Virla, E. G. (2004). Presencia invernal de Spodoptera frugiperda (Smith)(Lepidoptera: Noctuidae) en el área maicera de la provincia de Tucumán, Argentina. Revista de la Facultad de Agronomia 105, 4652.
Nakicenovic, N. & Swart, R. (2000). Special Report on Emissions Scenarios. Cambridge, UK: Cambridge University Press.
Nexticapan-Garcéz, A., Magdub-Méndez, A., Vergara-Yoisura, S., Martin-Μex, R. & Larqué-Saavedra, A. (2009). Fluctuación poblacional y daños causados por gusano cogollero (Spodoptera frugiperda JE Smith) en maíz cultivado en el sistema de producción continua afectado por el huracán isidoro. Universidad y Ciencia 25, 273277.
Oerke, E. C. (2006). Crop losses to pests. Journal of Agricultural Science 144, 3143.
Ouyang, F., Hui, C., Ge, S., Men, X. Y., Zhao, Z. H., Shi, P. J., Zhang, Y. S. & Li, B. L. (2014). Weakening density dependence from climate change and agricultural intensification triggers pest outbreaks: a 37-year observation of cotton bollworms. Ecology and Evolution 4, 33623374.
Parry, M. L., Porter, J. H. & Carter, T. R. (1990). Agriculture: climatic change and its implications. Trends in Ecology & Evolution 5, 318322.
Pashley, D. P. (1988). Quantitative genetics, development and physiological adaptation in host strains of fall armyworm. Evolution 42, 93102.
Patterson, D. T., Westbrook, J. K., Joyce, R. J. V., Lingren, P. D. & Rogasik, J. (1999). Weeds, insects, and diseases. Climatic Change 43, 711727.
Perkins, W. D. (1979). Laboratory rearing of the fall armyworm. Florida Entomologist 62, 8791.
Pollard, E., Moss, D. & Yates, T. J. (1995). Population trends of common British butterflies at monitored sites. Journal of Applied Ecology 32, 916.
Porter, J. H., Parry, M. L. & Carter, T. R. (1991). The potential effects of climatic change on agricultural insect pests. Agricultural and Forest Meteorology 57, 221240.
Poutsma, J., Loomans, A. J. M., Aukema, B. & Heijerman, T. (2008). Predicting the potential geographical distribution of the harlequin ladybird, Harmonia axyridis, using the CLIMEX model. BioControl 53, 103125.
Ramirez Garcia, L., Bravo Mojica, H. & Llanderal Cazares, C. (1987). Desarrollo de Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae) bajo diferentes condiciones de temperatura y humedad [Development of Spodoptera frugiperda (JE Smith) (Lepidoptera: Noctuidae) under different conditions of temperature and humidity]. Agrociencia 67, 161171.
Ramsfield, T. D., Bentz, B. J., Faccoli, M., Jactel, H. & Brockerhoff, E. G. (2016). Forest health in a changing world: effects of globalization and climate change on forest insect and pathogen impacts. Forestry 89, 245252.
Randall, M. G. M. (1986). The predation of predispersed Juncus squarrosus seeds by Coleophora alticolella (Lepidoptera) larvae over a range of altitudes in northern England. Oecologia 69, 460465.
Raupach, M. R., Marland, G., Ciais, P., Le Quéré, C., Canadell, J. G., Klepper, G. & Field, C. B. (2007). Global and regional drivers of accelerating CO2 emissions. Proceedings of the National Academy of Sciences 104, 1028810293.
Rios-Velasco, C., Gallegos-Morales, G., Rincón-Castro, M. C. D., Cerna-Chávez, E., Sánchez-Peña, S. R. & Siller, M. C. (2011). Insecticidal activity of native isolates of Spodoptera frugiperda multiple nucleopolyhedrovirus from soil samples in Mexico. Florida Entomologist 94, 716718.
Rojas, J. C., Virgen, A. & Malo, E. A. (2004). Seasonal and nocturnal flight activity of Spodoptera frugiperda males (Lepidoptera: Noctuidae) monitored by pheromone traps in the coast of Chiapas, Mexico. Florida Entomologist 87, 496503.
Rosenzweig, C., Iglesias, A., Yang, X. B., Epstein, P. R. & Chivian, E. (2001). Climate change and extreme weather events; implications for food production, plant diseases, and pests. Global Change & Human Health 2, 90104.
Shabani, F. & Kotey, B. (2016). Future distribution of cotton and wheat in Australia under potential climate change. The Journal of Agricultural Science, Cambridge 154, 175185.
Shabani, F., Kumar, L. & Taylor, S. (2012). Climate change impacts on the future distribution of date palms: a modeling exercise using CLIMEX. PLoS ONE 7, e48021. doi:10.1371/journal.pone.0048021.
Shabani, F., Kumar, L. & Taylor, S. (2014). Projecting date palm distribution in Iran under climate change using topography, physicochemical soil properties, soil taxonomy, land use, and climate data. Theoretical and Applied Climatology 118, 553567.
Shabani, F., Kumar, L., Nojoumian, A. H., Esmaeili, A. & Toghyani, M. (2016). Projected future distribution of date palm and its potential use in alleviating micronutrient deficiency. Journal of the Science of Food and Agriculture 96, 11321140.
Shiogama, H., Emori, S., Takahashi, K., Nagashima, T., Ogura, T., Nozawa, T. & Takemura, T. (2010). Emission scenario dependency of precipitation on global warming in the MIROC3. 2 model. Journal of Climate 23, 24042417.
Simmons, A. M. (1993). Effects of constant and fluctuating temperatures and humidities on the survival of Spodoptera frugiperda pupae (Lepidoptera: Noctuidae). Florida Entomologist 76, 333340.
Sparks, A. N. (1979). A review of the biology of the fall armyworm. The Florida Entomologist 62, 8287.
Sutherst, R. W. & Maywald, G. F. (1985). A computerised system for matching climates in ecology. Agriculture, Ecosystems & Environment 13, 281299.
Sutherst, R. W., Maywald, G. F. & Skarratt, D. B. (1995). Predicting insect distributions in a changed climate. In Insects in a Changing Environment (Eds Harrington, R. & Stork, N. E.), pp. 5991. London, UK: Academic Press.
Sutherst, R. W., Maywald, G. F. & Kriticos, D. J. (2007). CLIMEX Version 3: User's Guide. South Yarra, Australia: Hearne Scientific Software Pty Ltd.
Svobodová, E., Trnka, M., Dubrovský, M., Semerádová, D., Eitzinger, J., Štěpánek, P. & Žalud, Z. (2014). Determination of areas with the most significant shift in persistence of pests in Europe under climate change. Pest Management Science 70, 708715.
Tauber, M. J., Tauber, C. A. & Shinzo, M. (1986). Seasonal Adaptations of Insects. Oxford, UK: Oxford University Press.
Tewksbury, J. J., Huey, R. B. & Deutsch, C. A. (2008). Putting the heat on tropical animals. Science 320, 12961297.
Tsoar, A., Allouche, O., Steinitz, O., Rotem, D. & Kadmon, R. (2007). A comparative evaluation of presence-only methods for modelling species distribution. Diversity and Distributions 13, 397405.
Valdez-Torres, J. B., Soto-Landeros, F., Osuna-Enciso, T. & Báez-Sañudo, M. A. (2012). Modelos de predicción fenológica para maíz blanco (Zea mays L.) y gusano cogollero (Spodoptera frugiperda JE Smith). Agrociencia 46, 399410.
Vickery, R. A. (1929). Studies on the Fall Army Worm in the Gulf Coast District of Texas. Technical Bulletin no. 138. Washington, DC: United States Department of Agriculture, Economic Research Service.
Vilarinho, E. C., Fernandes, O. A., Hunt, T. E. & Caixeta, D. F. (2011). Movement of Spodoptera frugiperda adults (Lepidoptera: Noctuidae) in maize in Brazil. Florida Entomologist 94, 480488.
Virla, E. G., Álvarez, A., Loto, F., Pera, L. M. & Baigorí, M. (2008). Fall armyworm strains (Lepidoptera: Noctuidae) in Argentina, their associate host plants and response to different mortality factors in laboratory. Florida Entomologist 91, 6369.
Watt, A. D., Ward, L. K. & Eversham, B. C. (1990). Effects on animals: invertebrates. In The Greenhouse Effect and Terrestrial Ecosystems of the UK (Eds Cannell, M. G. R. & Hooper, M. D.), pp. 3237. ITE Research publication no. 4. London, UK: HMSO Publication Centre.
Watt, M. S., Kriticos, D. J., Lamoureaux, S. L. & Bourdôt, G. W. (2011). Climate change and the potential global distribution of serrated tussock (Nassella trichotoma). Weed Science 59, 538545.
Westbrook, J. K. & Sparks, A. N. (1986). The role of atmospheric transport in the economic fall armyworm (Lepidoptera: Noctuidae) infestations in the southeastern United States in 1977. Florida Entomologist 69, 492502.
Westbrook, J. K., Nagoshi, R. N., Meagher, R. L., Fleischer, S. J. & Jairam, S. (2016). Modeling seasonal migration of fall armyworm moths. International Journal of Biometeorology 60, 255267.
Whittaker, J. B. & Tribe, N. P. (1996). An altitudinal transect as an indicator of responses of a spittlebug (Auchenorrhynchaz, Cercopidae) to climate change. European Journal of Entomology 93, 319324.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

The Journal of Agricultural Science
  • ISSN: 0021-8596
  • EISSN: 1469-5146
  • URL: /core/journals/journal-of-agricultural-science
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed