Hostname: page-component-76fb5796d-vfjqv Total loading time: 0 Render date: 2024-04-26T13:40:15.624Z Has data issue: false hasContentIssue false

Global advances in weed management

Published online by Cambridge University Press:  17 November 2010

J. GRESSEL*
Affiliation:
Department of Plant Sciences, Weizmann Institute of Science, Rehovot, Israel

Summary

Weeds have been controlled so successfully by herbicides, subsequently supplemented by transgenic herbicide-resistant crops, that past intractable problems have been ignored and new ones are evolving. However, industry-led discovery of new herbicide targets is now lacking and weed science as a discipline is contracting globally. This paper describes novel technologies for dealing with major problems, including: better understanding of weed biology coupled with genomics; novel herbicide-resistant crops as well as engineered weed-competing crops; multi-target herbicides; and enhanced biocontrol agents. Together, these approaches may comprise the components of future integrated packages to slow down the evolution of new weed problems.

Type
Foresight Project on Global Food and Farming Futures
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Aly, R., Cholakh, H., Joel, D. M., Leibman, D., Steinitz, B., Zelcer, A., Naglis, A., Yarden, O. & Gal-On, A. (2009). Gene silencing of mannose 6-phosphate reductase in the parasitic weed Orobanche aegyptiaca through the production of homologous dsRNA sequences in the host plant. Plant Biotechnology Journal 7, 487498.CrossRefGoogle ScholarPubMed
Amsellem, Z., Cohen, B. A. & Gressel, J. (2002). Engineering hypervirulence in an inundative mycoherbicidal fungus for efficient weed control. Nature Biotechnology 20, 10351039.CrossRefGoogle Scholar
Bradshaw, L. D., Padgette, S. R., Kimball, S. L. & Wells, B. H. (1997). Perspectives on glyphosate resistance. Weed Technology 11, 189198.CrossRefGoogle Scholar
Brookes, G. & Barfoot, P. (2010). Global impact of biotech crops: environmental effects, 1996–2008. AgBioForum 13, 7694.Google Scholar
Castle, L. A., Siehl, D. L., Gorton, R., Patten, P. A., Chen, Y. H., Bertain, S., Cho, H. J., Duck, N., Wong, J., Liu, D. & Lassner, M. W. (2004). Discovery and directed evolution of a glyphosate tolerance gene. Science 304, 11511154.CrossRefGoogle ScholarPubMed
Dayan, F. E., Cantrell, C. L. & Duke, S. O. (2009). Natural products in crop protection. Bioorganic and Medicinal Chemistry 17, 40224034.CrossRefGoogle ScholarPubMed
De Framond, A., Rich, P. J., McMillan, J. & Ejeta, G. (2007). Effects of Striga parasitism of transgenic maize armed with RNAi constructs targeting essential S. asiatica genes. In Integrating New Technologies for Striga Control: Ending the Witch-hunt (Eds Ejeta, G. & Gressel, J.), pp. 185196. Singapore: World Scientific.CrossRefGoogle Scholar
Gandhi, H. T., Mallory-Smith, C. A., Watson, C. J. W., Vales, M. I., Zemetra, R. S. & Riera-Lizarazu, O. (2006). Hybridization between wheat and jointed goatgrass (Aegilops cylindrica) under field conditions. Weed Science 54, 10731079.Google Scholar
Gressel, J. (1988). Multiple resistances to wheat selective herbicides: new challenges to molecular biology. Oxford Survey of Plant Molecular and Cell Biology 5, 195203.Google Scholar
Gressel, J. (1999). Tandem constructs: preventing the rise of superweeds. Trends in Biotechnology 17, 361366.Google Scholar
Gressel, J. (2002). Molecular Biology of Weed Control. London: Taylor and Francis.CrossRefGoogle Scholar
Gressel, J. (2004 a). Two choices for agchem/agbiotech industries: the only way to go is down. Outlooks on Pest Management 15, 209210.Google Scholar
Gressel, J. (2004 b). Transgenic mycoherbicides; needs and safety considerations. In Handbook of Fungal Biotechnology (Ed. Arora, D. K.), pp. 549564. New York: Dekker.Google Scholar
Gressel, J. (Ed.) (2005). Crop Ferality and Volunteerism. Boca Raton, FL: CRC Press.CrossRefGoogle Scholar
Gressel, J. (2008). Genetic Glass Ceilings: Transgenics for Crop Biodiversity. Baltimore, MD: Johns Hopkins University Press.CrossRefGoogle Scholar
Gressel, J. & Valverde, B. E. (2009 a). A strategy to provide long-term control of weedy rice while mitigating herbicide resistance transgene flow, and its potential use for other crops with related weeds. Pest Management Science 65, 723731.Google Scholar
Gressel, J. & Valverde, B. E. (2009 b). The other, ignored HIV – Highly invasive vegetation. Food Security 1, 463478.CrossRefGoogle Scholar
Heap, I. M. (2010). International Survey of Herbicide-resistant Weeds. Available from: http://www.weedscience.org/In.asp (verified 20 September 2010).Google Scholar
Herms, D. A. & Mattson, W. J. (1992). The dilemma of plants to grow or to defend. Quarterly Reviews of Biology 67, 283335.CrossRefGoogle Scholar
Holm, L. G., Plucknett, D. L., Pancho, J. V. & Herberger, J. P. (1977). The World's Worst Weeds: Distribution and Biology. Honolulu, HI: University Press of Hawaii.Google Scholar
Huang, G. Z., Allen, R., Davis, E. L., Baum, T. J. & Hussey, R. S. (2006). Engineering broad root-knot resistance in transgenic plants by RNAi silencing of a conserved and essential root-knot nematode parasitism gene. Proceedings of the National Academy of Sciences, USA 103, 1430214306.CrossRefGoogle ScholarPubMed
James, C. (2010). Global Status of Commercialized Biotech/GM Crops: 2009. The First Fourteen Years, 1996 to 2009. ISAAA Brief 41–2009. Ithaca, NY: ISAAA. Available from: http://www.isaaa.org/resources/publications/briefs/41/executivesummary/default.asp (verified 20 September 2010).Google Scholar
Kanampiu, F., Karaya, H., Burnet, M. & Gressel, J. (2009). Needs for and effectiveness of slow release herbicide seed treatment Striga control formulations for protection against early season crop phytotoxicity. Crop Protection 28, 845853.Google Scholar
Rose, C. W., Millwood, R. J., Moon, H. S., Rao, M. R., Halfhill, M. D., Raymer, P. L., Warwick, S. I., Al-Ahmad, H., Gressel, J. & Stewart, C. N. Jr. (2009). Genetic load and transgenic mitigating genes in transgenic Brassica rapa (field mustard) × Brassica napus (oilseed rape) hybrid populations. BMC Biotechnology 9, 93. doi:10.1186/1472-6750-9-93. Available from: http://www.biomedcentral.com/1472–6750/9/93 (verified 20 September 2010).Google Scholar
Shivrain, V. K., Burgos, N. R., Sales, M. A., Mauromoustakos, A., Gealy, D. R., Smith, K. L., Black, H. L. & Jia, M. (2009). Factors affecting the outcrossing rate between Clearfield rice and red rice (Oryza sativa). Weed Science 57(4), 394403.CrossRefGoogle Scholar
Stewart, C. N. Jr. (Ed.) (2009). Genomics of Weedy and Invasive Plants. Ames, IA: Blackwell Scientific.Google Scholar
Trucco, F., Tatum, T., Rayburn, A. L. & Tranel, P. J. (2009). Out of the swamp: unidirectional hybridization with weedy species may explain the prevalence of Amaranthus tuberculatus as a weed. New Phytologist 184, 819827.CrossRefGoogle ScholarPubMed