Skip to main content Accessibility help
×
Home

Green Window Approach for improving nitrogen management by farmers in small-scale wheat fields

  • X. L. YUE (a1) (a2), Y. HU (a1), H. Z. ZHANG (a2) and U. SCHMIDHALTER (a1)

Summary

Improvement of nitrogen (N) use efficiency is urgently needed since excessive application of N fertilizer has been widespread in small-scale fields in China, causing great losses of N fertilizer and environmental pollution. In the present study, a simple technology, termed the Green Window Approach (GWA), to optimize N strategies for cereal crops is presented. The GWA represents an on-field demonstration site visualizing the effects of incremental N levels and enables farmers to conduct such a trial within their own fields. The lowest N rate that achieves no visible change in plant growth or biomass shows the optimal N requirement of crops. Therefore the objective was to develop the key procedures of GWA and to evaluate the effects of its application in cereal crops on grain yield, N use efficiency and economic benefit. A total of seven GWA trials were performed from 2009 to 2011 on farmers’ irrigated wheat fields in the North China Plain. The GWA consisted of eight small plots placed in a compact layout on a well-accessible part of the field. Plot size varied from 2·5×2·5 to 4×4 m2, depending on the size and shape of each field. All GWA plots received basal nitrogen (N), phosphorus (P) and potassium (K) rates of 30 kg N/ha (except for the nil-N plot), 80 kg P2O5/ha and 100 kg K2O/ha. Nitrogen supplies, including residual soil nitrate in 0–90 cm determined at Zadoks growth stages (GS) 21–23 in early spring and the split-topdressing N at GS 21–23 and GS 41–52, were incrementally increased from 0 to 420 kg N/ha. The remaining part of the field still received farmers’ customary fertilization (FCF). Optimal N rate could be estimated as the lowest N rate that achieved no visible change in plant growth at GS 60–73. Compared with FCF area, grain yield was increased by 13% to a maximum or near maximum value of 5·8 t/ha, optimal N rate was sharply decreased by 69% to 116 kg N/ha, apparent N recovery was greatly increased from 11 to 46%, whereas the cost of fertilizer input was decreased by 57% to 1045 Chinese Renminbi (RMB)/ha (162 US$/ha), the profit of grain yield was increased by 13% to 12 211 RMB/ha (1891 US$/ha) and the net economic benefits were increased by 60% to 7473 RMB/ha (1157 US$/ha). Most importantly, the GWA does not need laboratory facilities, complicated procedures or professional knowledge of N balances, and farmers can easily understand and use GWA by themselves.

Copyright

Corresponding author

* To whom all correspondence should be addressed. Email: schmidhalter@wzw.tum.de

References

Hide All
Arregui, L. M., Lasa, B., Lafarga, A., Irañeta, I., Baroja, E. & Quemada, M. (2006). Evaluation of chlorophyll meters as tools for N fertilization in winter wheat under humid Mediterranean conditions. European Journal of Agronomy 24, 140148.
Singh, B., Singh, Y. & Sekhon, G. S. (1995). Fertilizer-N use efficiency and nitrate pollution of groundwater in developing countries. Journal of Contaminant Hydrology 20, 167184.
Bijay-Singh, , Sharma, R. K., Jaspreet-Kaur, , Jat, M., Martin, K., Yadvinder-Singh, , Varinderpal-Singh, , Chandna, P., Choudhary, O., Gupta, R., Thind, H., Jagmohan-Singh, , Uppal, H., Khurana, H., Ajay-Kumar, , Uppal, R., Vashistha, M., Raun, W. & Gupta, R. (2011). Assessment of the nitrogen management strategy using an optical sensor for irrigated wheat. Agronomy for Sustainable Development 31, 589603.
Bremner, J. M. (1960). Determination of nitrogen in soil by the Kjeldahl method. Journal of Agricultural Science, Cambridge 55, 1133.
Brentrup, F. & Link, A. (2004). Stickstoffdüngung zur richtigen Zeit. Getreidemagazin 9, 230232.
Cui, Z. L., Chen, X. P., Miao, Y. X., Li, F., Zhang, F. S., Li, J. L., Ye, Y. L., Yang, Z. P., Zhang, Q. & Liu, C. S. (2008). On-farm evaluation of winter wheat yield response to residual soil nitrate-N in North China Plain. Agronomy Journal 100, 15271534.
Cui, Z. L., Zhang, F. S., Chen, X. P., Dou, Z. X. & Li, J. L. (2010). In-season nitrogen management strategy for winter wheat: maximizing yields, minimizing environmental impact in an over-fertilization context. Field Crops Research 116, 140146.
Derby, N. E., Steele, D. D., Terpstra, J., Knighton, R. E. & Casey, F. X. M. (2005). Interactions of nitrogen, weather, soil, and irrigation on corn yield. Agronomy Journal 97, 13421351.
Duan, Y. H. & Zhang, N. M. (2003). Analysis on current status of rural area non-point pollution in Dianchi Lake Basin. Environmental Protection 7, 2830.
Erdle, K., Mistele, B. & Schmidhalter, U. (2011). Comparison of active and passive spectral sensors in discriminating biomass parameters and nitrogen status in wheat cultivars. Field Crops Research 124, 7484.
Girma, K., Holtz, S. L., Arnall, D. B., Fultz, L. M., Hanks, T. L., Lawles, K. D., Mack, C. J., Owen, K. W., Reed, S. D., Santillano, J., Walsh, O., White, M. J. & Raun, W. R. (2007). Weather, fertilizer, previous year yield, and fertilizer levels affect ensuing year fertilizer response of wheat. Agronomy Journal 99, 16071614.
Ju, X. T., Kou, C. L., Zhang, F. S. & Christie, P. (2006). Nitrogen balance and groundwater nitrate contamination: comparison among three intensive cropping systems on the North China Plain. Environmental Pollution 143, 117125.
Ju, X. T., Xing, G. X., Chen, X. P., Zhang, S. L., Zhang, L. J., Liu, X. J., Cui, Z. L., Yin, B., Christie, P., Zhu, Z. L. & Zhang, F. S. (2009). Reducing environmental risk by improving N management in intensive Chinese agricultural systems. Proceedings of the National Academy of Sciences USA 106, 30413046.
Lambert, D. M., Lowenberg-DeBoer, J. & Malzer, G. L. (2006). Economic analysis of spatial-temporal patterns in corn and soybean response to nitrogen and phosphorus. Agronomy Journal 98, 4354.
Li, M. L., Ding, W. Q. & Song, J. H. (1999). Effect of different width of prepared row on marginal effect of winter wheat. Journal of Anhui Agrotechnical Teachers College 13, 1620.
Liu, X. J., Ju, X. T., Zhang, F. S. & Chen, X. P. (2003). Nitrogen recommendation for winter wheat using Nmin test and rapid plant tests in North China Plain. Communications in Soil Science and Plant Analysis 34, 25392551.
Liu, Y., Swinton, S. M. & Miller, N. R. (2006). Is site-specific yield response consistent over time? Does it pay? American Journal of Agricultural Economics 88, 471483.
Mistele, B. & Schmidhalter, U. (2008). Estimating the nitrogen nutrition index using spectral canopy reflectance measurements. European Journal of Agronomy 29, 184190.
NDRC (2007). The Production and Income of Wheat in the Main Production Regions are Continuously Increased in this Year – Investigation and Cost-benefit Analysis of Wheat in 2007 (in Chinese). Beijing, China: NDRC. Available from: http://www.sdpc.gov.cn/jggl/jgqk/t20070731_151678.htm (accessed 24 January 2014).
Olfs, H.-W., Blankenau, K., Brentrup, F., Jasper, J., Link, A. & Lammel, J. (2005). Soil- and plant-based nitrogen-fertilizer recommendations in arable farming. Journal of Plant Nutrition and Soil Science 168, 414431.
Peng, S., Laza, M. R. C., Garcia, F. V. & Cassman, K. G. (1995). Chlorophyll meter estimates leaf area–based nitrogen concentration of rice. Communications in Soil Science and Plant Analysis 26, 927935.
Raun, W. R., Solie, J. B., Stone, M. L., Zavodny, D. L., Martin, K. L. & Freeman, K. W. (2005). Automated calibration stamp technology for improved in-season nitrogen fertilization. Agronomy Journal 97, 338342.
Raun, W. R., Solie, J. B., Taylor, R. K., Arnall, D. B., Mack, C. J. & Edmonds, D. E. (2008). Ramp calibration strip technology for determining midseason nitrogen rates in corn and wheat. Agronomy Journal 100, 10881093.
Rimpau, J. (1984). Mit einem ‘Düngefenster’ die Stickstoffnachlieferung abschätzen. Deutsche Landwirtschafts-Gesellschaft (DLG)-Mitteilungen 2, 7273.
Roberts, D. C., Brorsen, B. W., Taylor, R. K., Solie, J. B. & Raun, W. R. (2011). Replicability of nitrogen recommendations from ramped calibration strips in winter wheat. Precision Agriculture 12, 653665.
Schmidhalter, U. (2005). Development of a quick on-farm test to determine nitrate levels in soil. Journal of Plant Nutrition and Soil Science 168, 432438.
Spaner, D., Todd, A. G., Navabi, A., Mckenzie, D. B. & Goonewardene, L. A. (2005). Can leaf chlorophyll measures at differing growth stages be used as an indicator of winter wheat and spring barley nitrogen requirements in Eastern Canada? Journal of Agronomy and Crop Science 191, 393399.
Tremblay, N., Wang, Z. J., Ma, B. L., Bélec, C. & Vigneault, P. (2009). A comparison of crop data measured by two commercial sensors for variable-rate nitrogen application. Precision Agriculture 10, 145161.
Tremblay, N., Bouroubi, Y. M. B., Bélec, C., Mullen, R. W., Kitchen, N. R., Thomason, W. E., Ebelhar, S., Mengel, D. B., Raun, W. R., Francis, D. D., Vories, E. D. & Ortiz-Monasterio, I. (2012). Corn response to nitrogen is influenced by soil texture and weather. Agronomy Journal 104, 16581671.
TUM (2010). Analyse Soil Nitrate by Yourself. Freising, Germany: Technische Universität München. Available from: http://nst.wzw.tum.de/index.php?id=2&L=1 (accessed 24 January 2014).
Wehrmann, J. & Scharpf, H. C. (1986). The Nmin-method – an aid to integrating various objectives of nitrogen fertilization. Zeitschrift für Pflanzenernährung und Bodenkunde 149, 428440.
Wu, D. R., Yu, Q., Wang, E. L. & Hengsdijk, H. (2008). Impact of spatial-temporal variations of climatic variables on summer maize yield in the North China Plain. International Journal of Plant Production 2, 7188.
Yang, Z. P., Zhang, Y. Z., Zeng, X. B., Zhou, W. J., Chen, J. G. & Zhou, Q. (2007). Degradation process of paddy soils with high yield caused by irrational fertilization. Journal of Hunan Agricultural University 33, 225231.
Yue, X. L., Li, F., Hu, Y. C., Zhang, H. Z., Ji, H. J., Zhang, W. L. & Schmidhalter, U. (2012). Evaluating the validity of a nitrate quick test in different Chinese soils. Pedosphere 22, 623630.
Zadoks, J. C., Chang, T. T. & Konzak, C. F. (1974). A decimal code for the growth stages of cereals. Weed Research 14, 415421.
Zhang, F. S., Wang, J. Q., Zhang, W. F., Cui, Z. L., Ma, W. Q., Chen, X. P. & Jiang, R. F. (2008). Nutrient use efficiencies of major cereal crops in China and measures for improvement. Acta Pedologica Sinica 45, 915924. (Chinese with English abstract).
Zhang, W. L., Tian, Z. X., Zhang, N. & Li, X. Q. (1996). Nitrate pollution of groundwater in northern China. Agriculture, Ecosystems and Environment 59, 223231.
Zhao, B. Q., Yu, S. L., Li, F. C. & Yu, Z. W. (1997). Marginal effect of winter wheat I. Relationship between wheat varieties and marginal effects. Tillage and Cultivation 4, 47. (in Chinese).

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed