Skip to main content
×
Home

Iron and zinc concentrations in peanut (Arachis hypogaea L.) seeds and their relationship with other nutritional and yield parameters

  • PASUPULETI JANILA (a1), S. N. NIGAM (a1), R. ABHISHEK (a1), V. ANIL KUMAR (a1), S. S. MANOHAR (a1) and R. VENUPRASAD (a2)...
Summary
SUMMARY

Biofortification (delivery of micronutrients via micronutrient-dense crops) can be achieved through plant breeding and offers a cost-effective and sustainable approach to fighting micronutrient malnutrition. The present study was conducted to facilitate the initiation of a breeding programme to improve the concentration of iron (Fe) and zinc (Zn) in peanut (Arachis hypogaea L.) seeds. The experiment was conducted with 64 diverse peanut genotypes for 2 years in eight different environments at the International Crops Research Institute for the Semi-Arid Tropics, Patancheru, India to assess the genetic variation for Fe and Zn concentrations in peanut seeds and their heritability and correlations with other traits. Significant differences were observed among the genotypes and environments for Fe (33–68 mg/kg), Zn (44–95 mg/kg), protein (150–310 mg/g) and oil (410–610 mg/g) concentration in seeds and their heritability was high, thus indicating the possibility of improving them through breeding. As seen in other plants, a significant positive association between concentrations of Fe and Zn was observed. Trade-offs between pod yield and Fe and Zn concentrations were not observed and the same was also true for oil content. Besides being high yielding, genotypes ICGV 06099 (57 mg/kg Fe and 81 mg/kg Zn) and ICGV 06040 (56 mg/kg Fe and 80 mg/kg Zn) had stable performance for Fe and Zn concentrations across environments. These are the ideal choices for use as parents in a breeding programme and in developing mapping populations.

Copyright
Corresponding author
*To whom all correspondence should be addressed. Email: p.janila@cgiar.org
References
Hide All
Amarakoon D., Thavarajah D., McPhee K. & Thavarajah P. (2012). Iron-, zinc-, and magnesium-rich field peas (Pisum sativum L.) with naturally low phytic acid: a potential food-based solution to global micronutrient malnutrition. Journal of Food Composition and Analysis 27, 813.
Ashok Kumar A., Reddy B. V. S., Ramaiah B., Reddy P. S., Sahrawat K. L. & Upadhyaya H. D. (2009). Genetic variability and plant character association of grain Fe and Zn in selected core collection accessions of sorghum germplasm and breeding lines. Journal of SAT Agricultural Research 7, 14.
Asibuo J. Y., Akromah R., Safo-Kantanka O., Adu-Dapaah H. K., Ohemeng-Dapaah S. & Agyeman A. (2008). Chemical composition of groundnut, Arachis hypogaea (L) landraces. African Journal of Biotechnology 7, 22032208.
Beebe S., Gonzalez A. V. & Rengifo J. (2000). Research on trace minerals in the common bean. Food and Nutrition Bulletin 21, 387391.
Blair M. W., Astudillo C., Grusak M. A., Graham R. & Beebe S. E. (2009). Inheritance of seed iron and zinc concentration in common bean (Phaseolus vulgaris L.). Molecular Breeding 23, 197207.
Bouis H. (1996). Enrichment of food staples through plant breeding: a new strategy for fighting micronutrient malnutrition. Nutrition Reviews 54, 131137.
Cichy K. A., Forster S., Grafton K. F. & Hosfield G. L. (2005). Inheritance of seed zinc accumulation in navy bean. Crop Science 45, 864870.
Crossa J. & Cornelius P. L. (1997). Sites regression and shifted multiplicative model clustering of cultivar trial sites under heterogeneity of error variances. Crop Science 37, 406415.
Engle-Stone R., Yeung A., Welch R. & Glahn R. P. (2005). Meat and ascorbic acid can promote Fe availability from Fe–phytate but not from Fe–tannic acid complexes. Journal of Agricultural and Food Chemistry 53, 1027610284.
FAO (2011). FAOSTAT. Rome: FAO. Available from: http://faostat.fao.org (accessed 2 February 2013).
Fehr W. R. (1991). Principles of Cultivar Development: Theory and Technique. New York, NY: Macmillan.
Fidler M. C., Davidsson L., Zeder C. & Hurrell R. F. (2004). Erythorbic acid is a potent enhancer of nonheme-iron absorption. American Journal of Clinical Nutrition 79, 99102.
Gabriel K. R. (1971). The biplot graphic display of matrices with application to principal component analysis. Biometrika 58, 453467.
Gibson R. S. (1994). Content and bioaccessibility of trace elements in vegetarian diets. American Journal of Clinical Nutrition 59 (Suppl.), 1223S1232S.
Gregorio G. B. (2002). Progress in breeding for trace minerals in staple crops. Journal of Nutrition 132, 500S502S.
Grusak M. A. & DellaPenna D. (1999). Improving the nutrient composition of plants to enhance human nutrition and health. Annual Review of Plant Physiology and Plant Molecular Biology 50, 133161.
Guzmán-Maldonado S. H., Martínez O., Acosta-Gallegos J. A., Guevara-Lara F. & Paredes-Lopez O. (2003). Putative quantitative trait loci for physical and chemical components of common bean. Crop Science 43, 10291035.
Hemalatha S., Platel K. & Srinivasan K. (2007). Influence of germination and fermentation on bioaccessibility of zinc and iron from food grains. European Journal of Clinical Nutrition 61, 342348.
House W. A., Welch R. M., Beebe S. & Cheng Z. (2002). Potential for increasing the amounts of bioavailable zinc in dry beans through plant breeding. Journal of the Science of Food and Agriculture 82, 14521457.
Jambunathan R. (1991). Groundnut quality characteristics. In Uses of Tropical Grain Legumes: Proceedings of a Consultants Meeting; 27–30 Mar 1989 (Eds Jambunathan R., Hall S. D., Sudhir P., Rajan V. & Sadhana V.), pp. 267275. Patancheru, India: ICRISAT.
Jambunathan R., Raju S. M. & Barde S. P. (1985). Analysis of oil content of groundnuts by nuclear magnetic resonance spectrometry. Journal of the Science of Food and Agriculture 36, 162166.
Joshi A. K., Crossa J., Arun B., Chand R., Trethowan R., Vargas M. & Ortiz-Monasterio I. (2010). Genotype × environment interaction for zinc and iron concentration of wheat grain in eastern Gangetic plains of India. Field Crops Research 116, 268277.
Klein M. A. & Grusak M. A. (2009). Identification of nutrient and physical seed trait QTLs in the model legume, Lotus japonicus. Genome 52, 677691.
Krapovickas A. & Gregory W. C. (1994). TaxonomIa del genero Arachis (Leguminosae). Bonplandia 8, 1186.
Kroonenberg P. M. (1995). Introduction to Biplots for G×E Tables. Report 51, Department of Mathematics Research, University of Queensland, Brisbane, Australia. Available from: http://three-mode.leidenuniv.nl/document/biplot.pdf (accessed 30 October 2013).
Lal C. & Singh A. L. (2007). Screening for high zinc density groundnut genotypes in India. In Zinc Crops 2007: Improving Crop Production and Human Health. Proceedings of a conference held 24–26 May 2007, Istanbul, Turkey. Tervueren, Belgium: International Zinc Association. Available from: http://zinc-crops.ionainteractive.com/ZnCrops2007/PDF/2007_zinccrops2007_lal_abstract.pdf (accessed May 2014).
Lu K., Li L., Zheng X., Zhang Z., Mou T. & Hu Z. (2008). Quantitative trait loci controlling Cu, Ca, Zn, Mn and Fe content in rice grains. Journal of Genetics 87, 305310.
Mayer J. E., Pfeiffer W. H. & Beyer P. (2008). Biofortified crops to alleviate micronutrient malnutrition. Current Opinion in Plant Biology 11, 166170.
Maziya-Dixon B., Kling J. G., Menkir A. & Dixon A. (2000). Genetic variation in total carotene, iron, and zinc contents of maize and cassava genotypes. Food and Nutrition Bulletin 21, 419422.
Morgounov A., Gómez-Becerra H. F., Abugalieva A., Dzhunusova M., Yessimbekova M., Munimjanov H., Zelenskiy Y., Ozturk L. & Cakmak I. (2007). Iron and zinc grain density in common wheat grown in Central Asia. Euphytica 155, 193203.
Muhr C. R., Datta N. P., Sankaran Bramony H., Leley V. R. & Donahue R. L. (1965). Soil Testing in India. New Delhi: USAID.
Ortiz-Monasterio J. I., Palacios-Rojas N., Meng E., Pixley K., Trethowan R. & Pena R. J. (2007). Enhancing the mineral and vitamin content of wheat and maize through plant breeding. Journal of Cereal Science 46, 293307.
Parsad R., Crossa J., Vargas M. & Bhatia V. K. (2007). Biplot graphic display: some concepts. In Electronic Book on Advances in Data Analytical Techniques (Eds Parsad R., Gupta V. K., Bhar L. M. & Bhatia V. K.), Module VI, section 6.3. New Delhi: ICAR. Available from: http://www.iasri.res.in/design/ebook/EBADAT/index.htm (accessed May 2014).
Peleg Z., Saranga Y., Yazici A., Fahima T., Ozturk L. & Cakmak I. (2008). Grain zinc, iron and protein concentrations and zinc-efficiency in wild emmer wheat under contrasting irrigation regimes. Plant and Soil 306, 5767.
Raboy V., Dickinson D. B. & Below F. E. (1984). Variation in seed total phosphorus, phytic acid, zinc, calcium, magnesium, and protein among lines of Glycine max and G. soja. Crop Science 24, 431434.
Reddy P. S., Reddy B. V. S., Ashok Kumar A., Ramesh S., Sahrawat K. L. & Venkateswara Rao P. (2010). Association of grain Fe and Zn contents with agronomic traits in sorghum. Indian Journal of Plant Genetic Resources 23, 280284.
Sahrawat K. L., Ravi Kumar G. & Rao J. K. (2002). Evaluation of triacid and dry ashing procedures for determining potassium, calcium, magnesium, iron, zinc, manganese, and copper in plant materials. Communications in Soil Science and Plant Analysis 33, 95102.
Sandberg A. S. (2002). Bioaccessibility of minerals in legumes. British Journal of Nutrition 88 (Suppl. S3), S281S285.
Sarla N., Mallikarjuna Swamy B. P., Kaladhar K., Anuradha K., Venkateshwar Rao Y., Batchu A. K., Agarwal S., Babu A. P., Sudhakar T., Sreenu K., Longvah T., Surekha K., Rao K. V., Reddy G. A., Roja T. V., Kiranmayi S. L., Radhika K., Manorama K., Cheralu C. & Viraktamath B. C. (2012). Increasing iron and zinc in rice grains using deep water rices and wild species – identifying genomic segments and candidate genes. Quality Assurance and Safety of Crops and Foods 4 (Spl. Issue), 138.
Sas Institute (2008). SAS/STAT 9.2 User's Guide. Cary, NC, USA: SAS Institute Inc.
Singh A. L., Chaudhari V. & Misra J. B. (2011). Zinc fortification in groundnut and identification of Zn responsive cultivars of India. In Zinc Crops 2011 – Plant Breeding and Molecular Biology. Proceedings of the 3rd International Zinc Symposium, Hyderabad, India, 10–14 Oct 2011. Tervueren, Belgium: International Zinc Association. Available from: http://www.zinccrops2011.org/presentations/2011_zinccrops2011_al_singh_2_abstract.pdf (accessed April 2014).
Singh U. & Jambunathan R. (1980). Evaluation of rapid methods for the estimation of protein in chickpea (Cicer arietinum L.). Journal of the Science of Food and Agriculture 31, 247254.
Thavarajah D. & Thavarajah P. (2012). Evaluation of chickpea (Cicer arietinum L.) micronutrient composition: biofortification opportunities to combat global micronutrient malnutrition. Food Research International 49, 99104.
Thavarajah D., Thavarajah P., See C. T. & Vandenberg A. (2010). Phytic acid and Fe and Zn concentration in lentil (Lens culinaris L.) seeds is influenced by temperature during seed filling period. Food Chemistry 122, 254259.
Upadhyaya H. D., Dronavalli N., Singh S. & Dwivedi S. L. (2012 a). Variability and stability for kernel iron and zinc contents in the ICRISAT mini core collection of peanut. Crop Science 52, 26282637.
Upadhyaya H. D., Mukri G., Nadaf H. L. & Singh S. (2012 b). Variability and stability analysis for nutritional traits in the mini core collection of peanut. Crop Science 52, 168178.
Velu G., Rai K. N., Muralidharan V., Longvah T. & Crossa J. (2011). Gene effects and heterosis for grain iron and zinc density in pearl millet (Pennisetum glaucum (L.) R. Br). Euphytica 180, 251259.
WHO (2002). The World health Report 2002: Reducing Risks, Promoting Healthy Life. Geneva: World Health Organization. Available from: http://www.who.int/whr/2002/en/ (accessed April 2014).
Yan W. (2002). Singular-value partitioning in biplot analysis of multienvironment trial data. Agronomy Journal 94, 990996.
Yan W. & Kang M. S. (2003). GGE Biplot Analysis: a Graphical Tool for Breeders, Geneticists and Agronomists. Boca Raton, FL, USA: CRC Press.
Yan W. & Tinker N. A. (2006). Biplot analysis of multi-environment trial data: principles and applications. Canadian Journal of Plant Science 86, 623645.
Yan W., Hunt L. A., Sheng Q. & Szlavnics Z. (2000). Cultivar evaluation and mega-environment investigation based on the GGE biplot. Crop Science 40, 597605.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

The Journal of Agricultural Science
  • ISSN: 0021-8596
  • EISSN: 1469-5146
  • URL: /core/journals/journal-of-agricultural-science
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Metrics

Full text views

Total number of HTML views: 3
Total number of PDF views: 17 *
Loading metrics...

Abstract views

Total abstract views: 215 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 24th November 2017. This data will be updated every 24 hours.