Hostname: page-component-76fb5796d-x4r87 Total loading time: 0 Render date: 2024-04-26T14:57:49.135Z Has data issue: false hasContentIssue false

Issues and pressures facing the future of soil carbon stocks with particular emphasis on Scottish soils

Published online by Cambridge University Press:  31 May 2013

S. BUCKINGHAM*
Affiliation:
Scotland's Rural College, West Mains Road, Edinburgh EH9 3JG, UK
R. M. REES
Affiliation:
Scotland's Rural College, West Mains Road, Edinburgh EH9 3JG, UK
C. A. WATSON
Affiliation:
Scotland's Rural College, Ferguson Building, Craibstone Estate, Aberdeen AB21 9YA, UK
*
*To whom all correspondence should be addressed. Email: sarah.buckingham@sruc.ac.uk

Summary

Soil organic carbon (C) plays a critical role in supporting the productive capacity of soils and their ability to provide a wide range of ecologically important functions including the storage of atmospherically derived carbon dioxide (CO2). The present paper collates available information on Scottish soil C stocks and C losses and reviews the potential pressures on terrestrial C, which may threaten future C stocks. Past, present and possible future land use, land management practices and land use changes (LUCs) including forestry, agriculture, nitrogen (N) additions, elevated CO2 and climate change for Scotland are discussed and evaluated in relation to the anthropogenic pressures on soil C.

The review deduces that current available data show little suggestion of significant changes in C stocks of Scottish soils, although this may be due to a lack of long-term trend data. However, it can be concluded that there are many pressures, such as climate change, intensity of land use practices, scale of LUC, soil erosion and pollution, which may pose significant threats to the future of Scottish soil C if these factors are not taken into consideration in future land management decisions. In particular, this is due to the land area covered by vulnerable peats and highly organic soils in Scotland compared with other areas in the UK. It is therefore imperative that soil C stocks for different land use, management practices and LUCs are monitored in more detail to provide further insight into the potential changes in sequestered C and subsequent greenhouse gas emissions, as advised by the United Nations Framework Convention on Climate Change (UNFCCC).

Type
Crops and Soils Review
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ammann, C., Flechard, C. R., Leifeld, J., Neftel, A. & Fuhrer, N. J. (2007). The carbon budget of newly established temperate grassland depends on management intensity. Agriculture, Ecosystems and Environment 121, 520.Google Scholar
Anon (2009). The Scottish Soil Framework. Edinburgh, UK: The Stationery Office. Available from: http://www.scotland.gov.uk/Publications/2009/05/20145602/0 (verified 18 April 2013).Google Scholar
Bain, C. G., Bonn, A., Stoneman, R., Chapman, S., Coupar, A., Evans, M., Gearey, B., Howat, M., Joosten, H., Keenleyside, C., Labadz, J., Lindsay, R., Littlewood, N., Lunt, P., Miller, C. J., Moxey, A., Orr, H., Reed, M., Smith, P., Swales, V., Thompson, D. B. A., Thompson, P. S., Van de Noort, R., Wilson, J. D. & Worrall, F. (2011). IUCN UK Commission of Inquiry on Peatlands. Edinburgh, UK: IUCN UK Peatland Programme.Google Scholar
Bellamy, P. H., Loveland, P. J., Bradley, R. I., Lark, R. M. & Kirk, G. J. D. (2005). Carbon losses from all soils across England and Wales 1978–2003. Nature 437, 245248.CrossRefGoogle ScholarPubMed
Billett, M. F., Charman, D. J., Clark, J. M., Evans, C. D., Evans, M. G., Ostle, N. J., Worrall, F., Burden, A., Dinsmore, K. J., Jones, T., McNamara, N. P., Parry, L., Rowson, J. G. & Rose, R. (2010). Carbon balance of UK peatlands: current state of knowledge and future research challenges. Climate Research 45, 1329.Google Scholar
Bonnett, S. A. F., Ostle, N. & Freeman, C. (2006). Seasonal variations in decomposition processes in a valley-bottom riparian peatland. Science of the Total Environment 370, 561573.Google Scholar
Bradley, R. I., Bell, J., Gauld, J. H., Lilly, A., Jordan, C., Higgins, A. & Milne, R. (2005). UK Soil database for Modelling Soil Carbon Fluxes and Land Use for the National Carbon Dioxide Inventory. Report to Defra Project SP0511. London: Defra.Google Scholar
Buckingham, S., Tipping, E. & Hamilton-Taylor, J. (2008). Concentration and fluxes of dissolved organic carbon in UK topsoils. Science of the Total Environment 407, 460470.Google Scholar
Cannell, M. G. R., Milne, R., Hargreaves, K. J., Brown, T. A. W., Cruickshank, M. M., Bradley, R. I., Spencer, T., Hope, D., Billet, M. F., Adger, W. N. & Subak, S. (1999). National inventories of terrestrial carbon sources and sinks: the UK experience. Climatic Change 42, 505530.Google Scholar
Carter, M. R. (2002). Soil quality for sustainable land management. Agronomy Journal 94, 3847.Google Scholar
Chamberlain, P. M., Emmett, B. A., Scott, W. A., Black, H. I. J., Hornung, M. & Frogbrook, Z. L. (2010). No change in topsoil carbon levels of Great Britain, 1978–2007. Biogeosciences Discussions 7, 22672311.Google Scholar
Chapman, S. J. (2010). Carbon sequestration in soils. In Carbon Capture: Sequestration and Storage (Eds Hester, R. E. & Harrison, R. M.), pp. 179202. Issues in Environmental Science and Technology 29. Cambridge, UK: RSC Publishing.Google Scholar
Chapman, S. J., Campbell, C. D. & Puri, G. (2003). Native woodland expansion: soil chemical and microbiological indicators of change. Soil Biology and Biochemistry 35, 753764.Google Scholar
Chapman, S. J., Bell, J., Donnelly, D. & Lilly, A. (2009). Carbon stocks in Scottish peatlands. Soil Use and Management 25, 105112.Google Scholar
Chiti, T., Certini, G., Puglisi, A., Sanesi, G., Capperucci, A. & Forte, C. (2007). Effects of associating a N-fixer species to monotypic oak plantations on the quantity and quality of organic matter in minesoils. Geoderma 138, 162169.Google Scholar
Ciais, P., Wattenbach, M., Vuichard, N., Smith, P., Piao, S. L., Don, A., Luyssaert, S., Janssens, I. A., Bondeau, A., Dechow, R., Leip, A., Smith, P. C., Beer, C., van der Werf, G. R., Gervois, S., Van Oost, K., Tomelleri, E., Freibauer, A., Schulze, E. D. & CarboEurope Synthesis Team (2010). The European carbon balance. Part 2: croplands. Global Change Biology 16, 14091428.Google Scholar
Clark, J. M., Bottrell, S. H., Evans, C. D., Monteith, D. T., Barlett, R., Rose, R., Newton, R. J. & Chapman, P. J. (2010). The importance of the relationship between scale and process in understanding long-term DOC dynamics. Science of the Total Environment 408, 27682775.Google Scholar
Conant, R. T., Easter, M., Paustian, K., Swan, A. & Williams, S. (2007). Impacts of periodic tillage on soil C stocks: a synthesis. Soil and Tillage Research 95, 110.Google Scholar
Countryside Survey (2007 a). Countryside Survey Summary Data Access. Countryside Survey Data owned by NERC – Centre for Ecology and Hydrology. Countryside Survey © Database Right/copyright NERC – Centre for Ecology and Hydrology. Wallingford, UK: CEH. Available from: www.countrysidesurvey.org.uk/data-access (verified 29th November 2011).Google Scholar
Countryside Survey (2007 b). Countryside Survey 2007, Scotland Results from 2007 Executive Summary. Countryside Survey © Database Right/Copyright NERC– Centre for Ecology & Hydrology. Wallingford, UK: CEH. Available from: http://www.countrysidesurvey.org.uk/outputs/scotland-results-2007 (verified 16 April 2013).Google Scholar
Cris, R., Buckmaster, S., Bain, C. & Bonn, A. (Eds) (2011). UK Peatland Restoration — Demonstrating Success. Edinburgh, UK: IUCN UK National Committee Peatland Programme.Google Scholar
Crute, I. R. & Muir, J. F. (2011). Editorial Improving the productivity and sustainability of terrestrial and aquatic food production systems: future perspectives. Journal of Agricultural Science, Cambridge 149 (Suppl. 1), 17.Google Scholar
Dalias, P., Anderson, J. M., Bottner, P. & Coûteaux, M.-M. (2001). Long-term effects of temperature on carbon mineralisation process. Soil Biology and Biochemistry 33, 10491057.CrossRefGoogle Scholar
Dawson, J. J. C. & Smith, P. (2007). Carbon losses from soil and its consequences for land-use management. Science of the Total Environment 382, 165190.CrossRefGoogle ScholarPubMed
de Vries, W., Reinds, G. J., Gundersen, P. & Sterba, H. (2006). The impact of nitrogen deposition on carbon sequestration in European forests and forest soils. Global Change Biology 12, 11511173.CrossRefGoogle Scholar
de Vries, W., Solberg, S., Dobbertin, M., Sterba, H., Laubhann, D., van Oijen, M., Evans, C., Gundersen, P., Kros, J., Wamelink, G. W. W., Reinds, G. J. & Sutton, M. A. (2009). The impact of nitrogen deposition on carbon sequestration by European forests and heathlands. Forest Ecology and Management 258, 18141823.Google Scholar
Dinsmore, K. J., Billett, M. F., Skiba, U. M., Rees, R. M., Drewer, J. & Helfter, C. (2010). Role of the aquatic pathway in the carbon and greenhouse gas budgets of a peatland catchment. Global Change Biology 16, 27502762.Google Scholar
Dobbie, K. E., Bruneau, P. M. C. & Towers, W. (Eds). (2011). The State of Scotland's Soil. Edinburgh, UK: Natural Scotland, Scottish Government. Available from: www.sepa.org.uk/land/land_publications.aspx (verified 16 April 2013).Google Scholar
Eggleston, H. S. & Irwin, J. G. (1995). Trends in sulphur and nitrogen emissions. In Acid Rain and its Impact: The Critical Loads Debate. Proceedings of a Conference held at the Environmental Change Research Centre, 17 September, 1993 (Ed. Battarbee, R. W.), pp. 1516. London: Ensis.Google Scholar
Erisman, J. W., Sutton, M. A., Galloway, J., Klimont, Z. & Winiwarter, W. (2008). How a century of ammonia synthesis changed the world. Nature Geoscience 1, 636639.Google Scholar
Eurostat (2011). Climate Change Statistics. Brussels: European Commission. Available from: http://epp.eurostat.ec.europa.eu/statistics_explained/index.php/Climate_change_statistics (verified April 2012).Google Scholar
Evans, C. D., Monteith, D. T. & Cooper, D. M. (2005). Long-term increases in surface water dissolved organic carbon: observations, possible causes and environmental impacts. Environmental Pollution 137, 5571.Google Scholar
Evans, C. D., Chapman, P. J., Clark, J. M., Monteith, D. T. & Cresser, M. S. (2006). Alternative explanations for rising dissolved organic carbon export from organic soils. Global Change Biology 12, 20442053.Google Scholar
Falloon, P., Powlson, D. & Smith, P. (2004). Managing field margins for biodiversity and carbon sequestration: a Great Britain case study. Soil Use and Management 20, 240247.Google Scholar
Fang, C., Smith, P. & Smith, J. U. (2005). Is resistant soil organic matter more sensitive to temperature than the labile organic matter? Biogeosciences Discussion 2, 725735.Google Scholar
Fitton, N., Ejerenwa, C. P., Bhogal, A., Edgington, P., Black, H., Lilly, A., Barraclough, D., Worrall, F., Hillier, J. & Smith, P. (2011). Greenhouse gas mitigation potential of agricultural land in Great Britain. Soil Use and Management 27, 491501.Google Scholar
Foley, J. A., De Fries, R., Asner, G. P., Barford, C., Bonan, G., Carpenter, S. R., Chapin, F. S., Coe, M. T., Daily, G. C., Gibbs, H. K., Helkowski, J. H., Holloway, T., Howard, E. A., Kucharik, C. J., Monfreda, C., Patz, J. A., Prentice, I. C., Ramankutty, N. & Snyder, P. K. (2005). Global consequences of land use. Science 309, 570574.Google Scholar
Foresight (2011). Foresight. The Future of Food and Farming: Challenges and Choices for Global Sustainability. Final Project Report. London: The Government Office for Science.Google Scholar
Forestry Commission (2010 a). Forestry Facts and Figures 2010: a Summary of Statistics about Woodland and Forestry. London: The Stationery Office.Google Scholar
Forestry Commission (2010 b). The Right Tree in the Right Place: Planning for Forestry and Woodland. Edinburgh: Forestry Commission Scotland.Google Scholar
Frogbrook, Z. L., Bell, J., Bradley, R. I., Evans, C., Lark, R. M., Reynolds, B., Smith, P. & Towers, W. (2009). Quantifying terrestrial carbon stocks: examining the spatial variation in two upland areas in the UK and a comparison to mapped estimates of soil carbon. Soil Use and Management 25, 320332.Google Scholar
Glenk, K. & Colombo, S. (2011). Designing policies to mitigate the agricultural contribution to climate change: an assessment of soil based carbon sequestration and its ancillary effects. Climatic Change 105, 4366.Google Scholar
González-Pérez, J. A., González-Vila, F. J., Almendros, G. & Knicker, H. (2004). The effect of fire on soil organic matter – a review. Environment International 30, 855870.Google Scholar
Grieve, I. C. (2001). Human impact on soil properties and their implications for the sensitivity of soil systems in Scotland. Catena 42, 361374.Google Scholar
Guo, L. B. & Gifford, R. M. (2002). Soil carbon stocks and land use change: a meta analysis. Global Change Biology 8, 345360.Google Scholar
Hagedorn, F., Spinnler, D. & Siegwolf, R. (2003). Increased N deposition retards mineralization of old soil organic matter. Soil Biology and Biochemistry 35, 16831692.Google Scholar
Hargreaves, K. J., Milne, R. & Cannell, M. G. R. (2003). Carbon balance of afforested peatland in Scotland. Forestry 76, 299317.CrossRefGoogle Scholar
Haygarth, P. M. & Ritz, K. (2009). The future of soils and land use in the UK: soil systems for the provision of land-based ecosystem services. Land Use Policy 26 (Suppl. 1), S187S197.Google Scholar
Hyvönen, R., Agren, G. I., Linder, S., Persson, T., Cotrufo, M. N., Ekblad, A., Freeman, M., Grelle, A., Janssens, I. A., Jarvis, P. G., Kellomaki, S., Lindroth, A., Loustau, D., Lundmark, T., Norby, R. J., Oren, R., Pilegaard, K., Ryan, M. G., Sigurdsson, B. D., Stromgren, M., van Oijen, M. & Wallin, G. (2007). The likely impact of elevated [CO2], nitrogen deposition, increased temperature and management on carbon sequestration in temperate and boreal forest ecosystems: a literature review. New Phytologist 173, 463480.Google Scholar
IPCC (2000). Special Report on Land Use, Land Use Change, and Forestry (Eds Watson, R. T., Noble, I. R., Bodin, B., Ravindranath, N. H., Verardo, D. J. & Dokken, D. J.). Cambridge, UK: Cambridge University Press.Google Scholar
IPCC (2006). IPCC Guidelines for National Greenhouse Gas Inventories; Prepared by the National Greenhouse Gas Inventories Programme. Japan: IPCC.Google Scholar
IPCC (2007). Summary for policy makers. In Climate Change 2007: Mitigation of Climate Change. Working Group III Contribution to the International Panel on Climate Change Fourth Assessment Report. (Eds Metz, B., Davidson, O. R., Bosch, P. R., Dave, R. & Meyer, L. A.), pp. 323. Cambridge, UK: Cambridge University Press.Google Scholar
Jandl, R., Lindner, M., Vesterdal, L., Bauwens, B., Baritz, R., Hagedorn, F., Johnson, D. W., Minkkinen, K. & Byrne, K. A. (2007). How strongly can forest management influence soil carbon sequestration? Geoderma 137, 253268.Google Scholar
Janssens, I. A., Freibauer, A., Ciais, P., Smith, P., Nabuurs, G.-J., Folberth, G., Schlamadinger, B., Hutjes, R. W. A., Ceulemans, R., Schulze, E-D., Valentini, R. & Dolman, A. J. (2003). Europe's terrestrial biosphere absorbs 7 to 12% of Europe's anthropogenic CO2 emissions. Science 300, 15381542.Google Scholar
Janssens, I. A., Dieleman, W., Luyssaert, S., Subke, J.-A., Reichstein, M., Ceulemans, R., Ciais, P., Dolman, A. J., Grace, J., Matteucci, G., Papale, D., Piao, S. L., Schulze, E.-D., Tang, J. & Law, B. E. (2010). Reduction of forest soil respiration in response to nitrogen deposition. Nature Geoscience 3, 315322.Google Scholar
Jones, S. K., Rees, R. M., Kosmas, D., Ball, B. C. & Skiba, U. M. (2006). Carbon sequestration in a temperate grassland: management and climatic controls. Soil Use and Management 22, 132142.Google Scholar
Joosten, H. (2011). Peatlands, Policies and Markets. Edinburgh, UK: IUCN UK Peatland Programme.Google Scholar
Khan, S. A., Mulvaney, R. L., Ellsworth, T. R. & Boast, C. W. (2007). The myth of nitrogen fertilization for soil carbon sequestration. Journal of Environmental Quality 36, 18211832.Google Scholar
Killham, K. (2011). Integrated soil management – moving towards globally sustainable agriculture. Journal of Agricultural Science, Cambridge 149 (Suppl. 1), 2936.Google Scholar
Lal, R., Kimble, J. M., Follett, R. F. & Cole, C. V. (1998). The Potential of US Cropland to Sequester Carbon and Mitigate Greenhouse Effect. Boca Raton, FL, USA: CRC Press.Google Scholar
Lal, R., Follett, R. F., Kimble, J. & Cole, C. V. (1999). Managing US cropland to sequester carbon in soil. Journal of Soil and Water Conservation 54, 374381.Google Scholar
Land Use Strategy for Scotland (2011). Getting the Best from our Land. A Land Use Strategy for Scotland. Edinburgh: The Stationery Office.Google Scholar
Lee, J., Hopmans, J. W., Rolston, D. E., Baer, S. G. & Six, J. (2009). Determining soil carbon stock changes: Simple bulk density corrections fail. Agriculture, Ecosystems and Environment 134, 251256.Google Scholar
Leifeld, J. & Fuhrer, J. (2010). Organic farming and soil carbon sequestration: what do we really know about the benefits? AMBIO: A Journal of the Human Environment 39, 585599.Google Scholar
Loveland, P. & Webb, J. (2003). Is there a critical level of organic matter in the agricultural soils of temperate regions: a review. Soil and Tillage Research 70, 118.Google Scholar
Lu, M., Zhou, X., Luo, Y., Yang, Y., Fang, C., Chen, J. & Li, B. (2011). Minor stimulation of soil carbon storage by nitrogen addition: a meta-analysis. Agriculture, Ecosystems and Environment 140, 234244.Google Scholar
Lumsdon, D. G., Stutter, M. I., Cooper, R. J. & Manson, J. R. (2005). Model assessment of biogeochemical controls on dissolved organic carbon partitioning in an acid organic soil. Environmental Science Technology 39, 80578063.Google Scholar
Magill, A. H. & Aber, J. D. (2000). Dissolved organic carbon and nitrogen relationships in forest litter as affected by nitrogen deposition. Soil Biology and Biochemistry 32, 603613.Google Scholar
Magnani, F., Mencuccini, M., Borghetti, M., Berbigier, P., Berninger, F., Delzon, S., Grelle, A., Hari, P., Jarvis, P. G., Kolari, P., Kowalski, A. S., Lankreijer, H., Law, B. E., Lindroth, A., Loustau, D., Manca, G., Moncrieff, J. B., Rayment, M., Tedeschi, V., Valentini, R. & Grace, J. (2007). The human footprint in the carbon cycle of temperate and boreal forests. Nature 447, 849851.Google Scholar
Mather, A. S. & Murray, N. C. (1988). The dynamics of rural land use change. Land Use Policy 5, 103120.Google Scholar
McCartney, A. G., Harriman, R., Watt, A. W., Moore, D. W., Taylor, E. M., Collen, P. & Keay, E. J. (2003). Long-term trends in pH, aluminium and dissolved organic carbon in Scottish fresh waters; implications for brown trout (Salmo trutta) survival. Science of the Total Environment 310, 133141.Google Scholar
McRobbie, G., Mccall, A., Midgley, A., Miller, N., Hall, J., Milne, G., Barnes, D., Maxwell, J., Barbour, A., McIntosh, B., Davies, S., O'Hara, J., Macleod, H., Aitken, M., Goodall, S., Swales, V., Pepper, S., Ross, I. & Ritchie, B. (2012). Report of the Woodland Expansion Advisory Group to the Cabinet Secretary for Rural Affairs and Environment, Richard Lochhead MSP. Edinburgh, UK: WEAG. Available from: http://www.forestry.gov.uk/weag (verified 12 December 2012).Google Scholar
Medina-Roldán, E., Paz-Ferreiro, J. & Bardgett, R. D. (2012). Grazing exclusion affects soil and plant communities, but has no impact on soil carbon storage in an upland grassland. Agriculture, Ecosystems and Environment 149, 118123.Google Scholar
Michel, K. & Matzner, E. (2002). Nitrogen content of forest floor Oa layers affects carbon pathways and nitrogen mineralization. Soil Biology and Biochemistry 34, 18071813.Google Scholar
Miller, D., Schwarz, G., Sutherland, L.-A., Morrice, J., Aspinall, R., Barnes, A., Blackstock, K., Buchan, K., Donnelly, D., Hawes, C., McCrum, G., McKenzie, B., Matthews, K., Miller, D., Renwick, A., Smith, M., Squire, G. & Toma, L. (2009). Changing land-use in rural Scotland – Drivers and decision-making. Rural land use study project 1. Scottish Government 2009.Google Scholar
Milne, R. & Brown, T. A. (1997). Carbon in the vegetation and soils of Great Britain. Journal of Environmental Management 49, 413433.Google Scholar
Monteith, D. T., Stoddard, J. L., Evans, C. D., de Wit, H. A., Forsius, M., Høgåsen, T., Wildander, A., Skjelkvåle, B. L., Jeffries, D. S., Vuorenmaa, J., Keller, B., Kopácek, J. & Vesely, J. (2007). Dissolved organic carbon trends resulting from changes in atmospheric deposition chemistry. Nature 450, 537540.Google Scholar
Morison, J., Vanguelova, E., Broadmeadow, S., Perks, M., Yamulki, S. & Randle, T. (2010). Understanding the GHG Implications of Forestry on Peat Soils in Scotland. Report by Forest Research for Forestry Commission Scotland. Edinburgh, UK: The Stationery Office.Google Scholar
Mulvaney, R. L., Khan, S. A. & Ellsworth, T. R. (2009). Synthetic nitrogen fertilizers deplete soil nitrogen: a global dilemma for sustainable cereal production. Journal of Environmental Quality 38, 22952314.Google Scholar
Nave, E., Vance, E. D., Swanston, C. W. & Curtis, P. S. (2009). Impacts of elevated N inputs on north temperate forest soil C storage, C/N, and net N-mineralization. Geoderma 153, 231240.Google Scholar
Nayak, D. N., Miller, D., Nolan, A., Smith, P. & Smith, J. (2008). Calculating Carbon Savings from Wind Farms on Scottish Peat Lands – a New Approach. Final report to the Rural and Environment Research and Analysis Directorate of the Scottish Government, Science Policy and Co-ordination Division. Edinburhg, UK: The Stationery Office. Available from: http://www.scotland.gov.uk/Publications/2008/06/25114657/18 (verified 17 April 2013).Google Scholar
Ostle, N. J., Levy, P. E., Evans, C. D. & Smith, P. (2009). UK land use and soil carbon sequestration. Land Use Policy 26 (Suppl. 1), S274S283.Google Scholar
Paustian, K., Andren, O., Janzen, H. H., Lal, R., Smith, P., Tian, G., Tiessen, H., Van Noordwijk, M. & Woomer, P. L. (1997). Agricultural soils as a sink to mitigate CO2 emissions. Soil Use and Management 13 (Suppl. s4), 230244.Google Scholar
Piñeiro, G., Paruelo, J. M., Oesterheld, M. & Jobbágy, E. G. (2010). Pathways of grazing effects on soil organic carbon and nitrogen. Rangeland Ecology and Management 63, 109119.Google Scholar
Plante, A. F., Conant, R. T., Carlson, J., Greenwood, R., Shulman, J. M., Haddix, M. L. & Paul, E. A. (2010). Decomposition temperature sensitivity of isolated soil organic matter fractions. Soil Biology and Biochemistry 42, 19911996.Google Scholar
Potschin, M. (2009). Land use and the state of the natural environment. Land Use Policy 26 (Suppl. 1), S170S177.Google Scholar
Powlson, D. S., Whitmore, A. P. & Goulding, K. W. T. (2011). Soil carbon sequestration to mitigate climate change: a critical re-examination to identify the true and the false. European Journal of Soil Science 62, 4255.Google Scholar
Rees, R. M., Bingham, I. J., Baddeley, J. A. & Watson, C. A. (2005). The role of plants and land management in sequestering soil carbon in temperate arable and grassland ecosystems. Geoderma 128, 130154.Google Scholar
Rees, R. M., Black, H., Chapman, S. J., Clayden, H., Edwards, A. C. & Waldron, S. (2011). Loss of soil organic matter. In The State of Scotland's Soil (Eds Dobbie, K. E., , P.Bruneau, M. C. & Towers, W.), pp. 2333. Edinburgh, UK: Natural Scotland. Available from: www.sepa.org.uk/land/land_publications.aspx (verified 18 April 2013).Google Scholar
Rounsevell, M. D. A. & Reay, D. S. (2009). Land use and climate change in the UK. Land Use Policy 26 (Suppl. 1), S160S169.Google Scholar
Schimel, D. S., House, J. I., Hibbard, K. A., Bousquet, P., Ciais, P., Peylin, P., Braswell, B. H., Apps, M. J., Baker, D., Bondeau, A., Canadell, J., Churkina, G., Cramer, W., Denning, A. S., Field, C. B., Friedlingstein, P., Goodale, C., Heimann, M., Houghton, R. A., Melillo, J. M., Moore, B., Murdiyarso, D., Noble, I., Pacala, S. W., Prentice, I. C., Raupach, M. R., Rayner, P. J., Scholes, R. J., Steffen, W. L. & Wirth, C. (2001). Recent patterns and mechanisms of carbon exchange by terrestrial ecosystems. Nature 414, 169172.Google Scholar
Schlesinger, W. H. (2000). Carbon sequestration in soils: some cautions and optimism. Agriculture, Ecosystems and Environment 82, 121127.Google Scholar
Schrumpf, M., Schulze, E. D., Kaiser, K. & Schumacher, J. (2011). How accurately can soil organic carbon stocks and stock changes be quantified by soil inventories? Biogeosciences 8, 11931212.Google Scholar
Schulze, E. D., Ciais, P., Luyssaert, S., Schrumpf, M., Janssens, I. A., Thiruchittampalam, B., Theloke, J., Saurat, M., Bringezu, S., Lelieveld, J., Lohila, A., Rebmann, C., Jung, M., Bastviken, D., Abril, G., Grassi, G., Leip, A., Freibauer, A., Kutsch, W., Don, A., Nieschulze, J., Börner, A., Gash, J. H. & Dolman, A. J. (2010). The European carbon balance. Part 4: integration of carbon and other trace-gas fluxes. Global Change Biology 16, 14511469.Google Scholar
Scottish Executive (2006). The Scottish Forestry Strategy, SE/2006/155. Forestry Commission Scotland. Edinburgh, UK: The Stationery Office.Google Scholar
Scottish Government (2008). Climate Change and Scottish Agriculture: Report and Recommendations of the Agriculture and Climate Change Stakeholder Group. Victoria Quay, Edinburgh, UK. Available from: http://www.scotland.gov.uk/Publications/2008/05/15115150/0 (verified 30 April 2013).Google Scholar
Scottish Government (2009). Climate Change (Scotland) Act 2009 asp12. Edinburgh, UK: The Stationery Office. Available from: http://www.legislation.gov.uk/asp/2009/12/contents (verified 18 April 2013).Google Scholar
Scottish Government (2011). Final Results from 2011 June Agricultural Census, 27th September 2011. The Scottish Government 2011. Statistical Publication, Agriculture Series. Edinburgh, UK: The Stationery Office. Available from: http://www.scotland.gov.uk/Publications/2011/09/27083355/0 (verified 18 April 2013).Google Scholar
Scottish Government (2012). Funding for Peatland Restoration. Edinburgh, UK: The Stationery Office. Available from: http://www.scotland.gov.uk/News/Releases/2012/10/Peatlands22102012 (verified 5th November 2012).Google Scholar
Smith, P. (2004 a). Monitoring and verification of soil carbon changes under Article 3·4 of the Kyoto Protocol. Soil Use and Management 20, 264270.Google Scholar
Smith, P. (2004 b). Carbon sequestration in croplands: the potential in Europe and the global context. European Journal of Agronomy 20, 229236.Google Scholar
Smith, P. (2008). Land use change and soil organic carbon dynamics. Nutrient Cycling in Agroecosystems 81, 169178.Google Scholar
Smith, P., Chapman, S. J., Scott, W. A., Black, H. I. J., Wattenbach, M., Milne, R., Campbell, C. D., Lilly, A., Ostle, N., Levy, P. E., Lumsdon, D. G., Millard, P., Towers, W., Zaehle, S. & Smith, J. U. (2007 a). Climate change cannot be entirely responsible for soil carbon loss observed in England and Wales, 1978–2003. Global Change Biology 13, 26052609.Google Scholar
Smith, P., Smith, J., Flynn, H., Killham, K., Rangel-Castro, I., Foereid, B., Aitkenhead, M., Chapman, S., Towers, W., Bell, J., Lumsdon, D., Milne, R., Thomson, A., Simmons, I., Skiba, U., Reynolds, B., Evans, C., Frogbrook, Z., Bradley, I., Whitmore, A. & Falloon, P. (2007 b). ECOSSE: Estimating Carbon in Organic Soils Sequestration and Emissions. Scottish Executive Environmental and Rural Affairs Department, Environmental Research. Edinburgh, UK: The Stationery Office.Google Scholar
Smith, P., Bhogal, A., Edgington, P., Black, H., Lilly, A., Barraclough, D., Worral, F., Hillier, J. & Merrington, G. (2010). Consequences of feasible future agricultural land-use change on soil organic carbon socks and greenhouse gas emissions in Great Britain. Soil Use and Management 26, 381398.Google Scholar
Soane, B. D., Ball, B. C., Arvidsson, J., Basch, G., Moreno, F. & Roger-Estrade, J. (2012). No-till in northern, western and south-western Europe: a review of problems and opportunities for crop production and the environment. Soil and Tillage Research 118, 6687.Google Scholar
Soil Survey Staff (1984). Organisation and Methods of the 1 : 250 000 Soil Survey of Scotland. Handbook 8. Aberdeen, UK: Macaulay Institute for Soil Research.Google Scholar
Sonneveld, M. P. W. & Van den Akker, J. J. H. (2011). Quantification of C and N stocks in grassland topsoils in a Dutch region dominated by dairy farming. Journal of Agricultural Science, Cambridge 149, 6371.Google Scholar
Soussana, J. F., Pilegaard, K., Ambus, P., Berbigier, P., Ceschia, E., Clifton-Brown, J., Czobel, Sz., de Groot, T., Fuhrer, J., Horvagh, L., Hensen, A., Jones, M., Kasper, J., Martin, C., Milford, C., Nagy, Z., Neftel, A., Raschi, A., Rees, R. M., Skiba, U., Stefani, P., Saletes, S., Sutton, M. A., Tuba, S. & Weidinger, T. (2004). Annual greenhouse gas balance of European grasslands. First results from the GreenGrass project. In Greenhouse Gas Emissions from Agriculture: Mitigation Options and Strategies. Conference Proceedings (Ed. Weiske, A.), pp. 2530. Leipzig, Germany: Institute for Energy and Environment.Google Scholar
Thomson, A. M., Mobbs, D. C., Milne, R., Skiba, U., Clark, A., Levy, P. E., Jones, S. K., Billett, M. F., Van Oijen, M., Ostle, N., Foereid, B., Fung, W. S., Smith, P., Matthews, R. W., Mackie, E., Bellamy, P., Rivas-Casado, M., Grace, J., Higgins, A., Jordan, C. & Tomlinson, R. W. (2008). Inventory and Projections of UK Emissions by Sources and Removals by Sinks due to Land Use, Land Use Change and Forestry. Annual Report to the UK Department for the Environment, Food and Rural Affairs (DEFRA), July 2008. DEFRA Contract no. GA01088. Edinburgh, UK: CEH/Defera.Google Scholar
Towers, W., Grieve, I. C., Hudson, G., Campbell, C. D., Lilly, A., Davidson, D. A., Bacon, J. R., Langan, S. J. & Hopkins, D. A. (2006). Scotland's Soil Resource – Current State and Threats. Edinburgh, UK: The Stationery Office. Available from: http://www.scotland.gov.uk/Publications/2006/09/21115639/0 (verified 18 April 2013).Google Scholar
Trumbore, S. E., Chadwick, O. A. & Amundson, R. (1996). Rapid exchange between soil carbon and atmospheric carbon dioxide driven by temperature change. Science 272, 393396.Google Scholar
Turunen, J., Roulet, N. T., Moore, T. R. & Richard, P. J. H. (2004). Nitrogen deposition and increased carbon accumulation in ombrotrophic peatlands in eastern Canada. Global Biogeochemical Cycles 18, GB3002. doi:10.1029/2003GB002154Google Scholar
UK Government (2008). Climate Change Act 2008. Chapter 27. London: The Stationery Office. Available from: http://www.legislation.gov.uk/ukpga/2008/27/contents (verified 18 April 2013).Google Scholar
van Camp, L., Bujarrabal, B., Gentile, A. R., Jones, R. J. A., Montanarella, L., Olazabal, C. & Selvaradjou, S. -K. (2004). Reports of the Technical Working Groups Established under the Thematic Strategy for Soil Protection. Volume III, Organic Matter. EUR 21319 EN/3 European Commission. Luxembourg: Office for Official Publications of the European Communities.Google Scholar
von Lutzow, M. & Kögel-Knabner, I. (2009). Temperature sensitivity of soil organic matter decomposition – what do we know? Biology and Fertility of Soils 46, 115.Google Scholar
Walker, R. L., Topp, K. & Watson, C. A. (2007). SAC crop rotation trials – history, present and future. In Measuring Food Quality: Concepts, Methods and Challenges. International Training and Exchange Workshop, 12–14 February 2007, Driebergen, Netherlands (Ed. van de Vijver, L. P. L.), pp. 3334. Driebergen, Netherlands: Lois Bolk Institute.Google Scholar
Watson, C. A., Walker, R. L. & Stockdale, E. A. (2008). Research in organic production systems – past, present and future. Journal of Agricultural Science, Cambridge 146, 119.Google Scholar
Wellock, M. L., Reidy, B., Laperle, C. M., Bolger, T. & Keily, G. (2011). Soil organic carbon stocks of afforested peatlands in Ireland. Forestry 84, 441451.Google Scholar
Wilson, B. & Puri, G. (2001). A comparison of pinewood and moorland soils in the Abernethy Forest Reserve, Scotland. Global Ecology and Biogeography 10, 291303.Google Scholar
Worrall, F. & Burt, T. P. (2007). Trends in DOC concentration in Great Britain. Journal of Hydrology 346, 8192.Google Scholar
Worrall, F., Bell, M. J. & Bhogal, A. (2009). Assessing the probability of carbon and greenhouse gas benefit from the management of peat soils. Science of the Total Environment 408, 26572666.Google Scholar
Yallop, A. R., Clutterbuck, B. & Thacker, J. (2010). Increases in humic dissolved organic carbon export from upland peat catchments: the role of temperature, declining sulphur deposition and changes in land management. Climate Research 45, 4356.Google Scholar
Zerva, A. & Mencuccini, M. (2005). Short-term effects of clearfelling on soil CO2, CH4 and N2O fluxes in a Sitka spruce plantation. Soil Biology and Biochemistry 37, 20252036.Google Scholar