Hostname: page-component-76fb5796d-qxdb6 Total loading time: 0 Render date: 2024-04-28T18:49:48.762Z Has data issue: false hasContentIssue false

Lateral and depth patterns of soil organic carbon fractions in a mountain Mediterranean agrosystem

Published online by Cambridge University Press:  23 December 2014

L. QUIJANO*
Affiliation:
Estación Experimental de Aula Dei, Consejo Superior de Investigaciones Científicas (EEAD-CSIC), Zaragoza P.O. Box 13034, 50080, Spain
L. GASPAR
Affiliation:
School of Geography, Earth and Environmental Sciences, Plymouth University, Plymouth, Devon, PL4 8AA, UK
A. NAVAS
Affiliation:
Estación Experimental de Aula Dei, Consejo Superior de Investigaciones Científicas (EEAD-CSIC), Zaragoza P.O. Box 13034, 50080, Spain
*
*To whom all correspondence should be addressed. Email: lquijano@eead.csic.es

Summary

The spatial distribution of soil organic carbon (SOC) can be affected by environmental factors such as land use change, type of vegetation, soil redistribution processes and soil management practices. Because data are scarce in mountain agroecosystems, improving knowledge on the relationships between land use, soil redistribution processes and SOC fractions is of interest, especially in rapidly changing Mediterranean landscapes. Typically, SOC is divided into two distinct carbon fractions: the active and decomposable fraction (ACF) with rapid turnover rates, which acts as a short-term carbon reservoir, and the stable carbon fraction (SCF) with lower turnover rates that acts as a long-term reservoir. In the present study SOC, ACF and SCF contents were measured by the dry combustion method and converted to inventories expressed as mass per unit surface area (kg/m2). The SOC distribution patterns were related to land use and soil redistribution processes in soil profiles along a representative mountain agroecosystem toposequence in northeast Spain. The soil depth profiles were identified as stable, eroded and depositional sites using fallout 137caesium (Cs). Significantly higher amounts of SOC were found in forest soils (36 ± 20·2 g/kg) compared to abandoned (21 ± 14·3 g/kg) and cultivated arable land (11 ± 6·3 g/kg), suggesting that cultivation decreases SOC content. In addition, stable soil profiles had significantly higher SOC content (42 ± 24·3 g/kg) than at depositional and eroded profiles (18 ± 14·5 and 17 ± 13·1 g/kg, respectively). A positive and statistically significant relationship between SOC and 137Cs inventories suggested that both are moved and associated with similar soil redistribution processes.

Type
Crops and Soils Research Papers
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Adu, J. K. & Oades, J. M. (1978). Physical factors influencing decomposition of organic materials in soil aggregates. Soil Biology and Biochemistry 10, 109115.CrossRefGoogle Scholar
Blanco-Moure, N., Gracia, R., Bielsa, A. C. & López, M. V. (2013). Long term no-tillage effects on particulate and mineral-associated soil organic matter under rainfed Mediterranean conditions. Soil Use and Management 29, 250259.CrossRefGoogle Scholar
Boix-Fayos, C., De Vente, J., Albaladejo, J. & Martínez-Mena, M. (2009). Soil carbon erosion and stock as affected by land use changes at the catchment scale in Mediterranean ecosystems. Agriculture, Ecosystems and Environment 133, 7585.CrossRefGoogle Scholar
Bornemann, L., Herbst, M., Welp, G., Vereecken, H. & Amelung, W. (2011). Rock fragments control organic carbon pool sizes in agricultural topsoil. Soil Science Society of America Journal 75, 18981907.CrossRefGoogle Scholar
Bryan, R. B. (1971). Considerations of soil erodibility indices and sheetwash. Catena 4, 99111.Google Scholar
Cheng, L., Leavitt, S. W., Kimball, B. A., Pinter, P. J. Jr., Ottman, M. J., Matthias, A., Wall, G. W., Brooks, T., Williams, D. G. & Thompson, T. L. (2007). Dynamics of labile and recalcitrant soil carbon pools in a sorghum free-air CO2 enrichment (FACE) agroecosystem. Soil Biology and Biochemistry 39, 22502263.CrossRefGoogle Scholar
Chichester, F. W. & Chaison, R. F. Jr. (1992). Analysis of carbon in calcareous soils using a two temperature dry combustion infrared instrumental procedure. Soil Science 153, 237241.CrossRefGoogle Scholar
Coleman, D. C., Crossley, D. A. & Hendrix, P. F. (1996). Fundamentals of Soil Ecology. New York: Academic Press.Google Scholar
Collins, H. P., Elliott, E. T., Paustian, K., Bundy, L. G., Dick, W. A., Huggins, D. R., Smucker, A. J. M. & Paul, E. A. (2000). Soil carbon pools and fluxes in long-term corn belt agroecosystems. Soil Biology and Biochemistry 32, 157168.CrossRefGoogle Scholar
De Cort, M., Dubois, G. & Fridman, S. D. (1998). The Atlas of Caesium Deposition on Europe after the Chernobyl Accident. EUR Report 16733. Luxembourg: Office for Official Publications of the European Communities.Google Scholar
Falloon, P. D. & Smith, P. (2000). Modelling refractory soil organic matter. Biology and Fertility of Soils 30, 388398.Google Scholar
García-León, M., Manjón, G. & Sánchez-Angulo, C. (1993). 99Tc/137Cs activity ratios in rainwater samples collected in the south of Spain. Journal of Environmental Radioactivity 20, 4961.CrossRefGoogle Scholar
Gaspar, L. & Navas, A. (2013). Vertical and lateral distributions of 137Cs in cultivated and uncultivated soils on Mediterranean hillslopes. Geoderma 207–208, 131143.CrossRefGoogle Scholar
Gaspar, L., Navas, A., Walling, D. E., Machín, J. & Gómez Arozamena, J. (2013 a). Using 137Cs and 210Pbex to assess soil redistribution on slopes at different temporal scales. Catena 102, 4654.CrossRefGoogle Scholar
Gaspar, L., Navas, A., Machín, J. & Walling, D. E. (2013 b). Using 210Pbex measurements to quantify soil redistribution along two complex toposequences in Mediterranean agroecosystems, northern Spain. Soil and Tillage Research 130, 8190.CrossRefGoogle Scholar
Gregorich, E. G., Greer, K. J., Anderson, D. W. & Liang, B. C. (1998). Carbon distribution and losses: erosion and deposition effects. Soil and Tillage Research 47, 291302.CrossRefGoogle Scholar
Guoxiao, W., Yibo, W. & Yanlin, W. (2008). Using 137Cs to quantify the redistribution of soil organic carbon and total N affected by intensive soil erosion in the headwaters of the Yangtze River, China. Applied Radiation Isotopes 66, 20072012.CrossRefGoogle ScholarPubMed
Hamza, M. A. & Anderson, W. K. (2005). Soil compaction in cropping systems: a review of the nature, causes and possible solutions. Soil and Tillage Research 82, 121145.CrossRefGoogle Scholar
Haynes, R. J. (2005). Labile organic matter fractions as central components of the quality of agricultural soils: an overview. Advances in Agronomy 85, 221268.CrossRefGoogle Scholar
Islam, K. R. & Weil, R. R. (2000). Soil quality indicator properties in mid-Atlantic soils as influenced by conservation management. Journal of Soil and Water Conservation 55, 6978.Google Scholar
Jiménez, J. J., Lal, R., Leblanc, H. A. & Russo, R. O. (2007). Soil organic carbon pool under native tree plantations in the Caribbean lowlands of Costa Rica. Forest Ecology and Management 241, 134144.CrossRefGoogle Scholar
LECO (1996). CNS-2000 Elemental Analyser – Instruction Manual. St. Joseph, MI: LECO Corp.Google Scholar
Li, Y., Zhang, Q. W., Reicosky, D. C., Bai, L. Y., Lindstrom, M. J. & Li, L. (2006). Using 137Cs and 210Pbex for quantifying soil organic carbon redistribution affected by intensive tillage on steep slopes. Soil and Tillage Research 86, 176184.CrossRefGoogle Scholar
Lopez-Capel, E., Krull, E. S., Bol, R. & Manning, D. A. C. (2008). Influence of recent vegetation on labile and recalcitrant carbon soil pools in central Queensland, Australia: evidence from thermal analysis quadrupole mass spectrometry-isotope ratio mass spectrometry. Rapid Communication in Mass Spectrometry 22, 17511758.CrossRefGoogle ScholarPubMed
López-Vicente, M. (2008). Erosión y redistribución del suelo en agrosistemas mediterráneos: Modelización predictiva mediante SIG y validación con 137Cs (Cuenca de Estaña, Pirineo Central). Ph.D. Thesis, The University of Zaragoza.Google Scholar
López-Vicente, M., Navas, A. & Machín, J. (2008). Modelling soil detachment rates in rainfed agrosystems in the south-central Pyrenees. Agricultural Water Management 95, 10791089.CrossRefGoogle Scholar
Lorenz, K., Lal, R. & Shipitalo, M. J. (2011). Stabilized soil organic carbon pools in subsoils under forest are potential sinks for atmospheric CO2. Forest Science 57, 1925.Google Scholar
Machín, J., López-Vicente, M. & Navas, A. (2008). Cartografía digital de suelos de la Cuenca de Estaña (Prepirineo Central). In Trabajos de Geomorfología en España (Eds Benavente, J. & Gracia, F. J.), pp. 481484. Cádiz, Spain: SEG y Universidad de Cádiz.Google Scholar
Navas, A. & Walling, D. E. (1992). Using caesium-137 to assess sediment movement in a semarid upland environment in Spain. In Erosion, Debris, Flows and Environment in Mountain Regions (Eds Walling, D. E., Davies, T. R. & Hasholt, B.), pp. 129138. IAHS Publication 209. Wallingford, UK: IAH.Google Scholar
Navas, A., Machín, J. & Soto, J. (2005 a). Assessing soil erosion in a Pyrenean mountain catchment using GIS and fallout 137Cs. Agriculture, Ecosystems and Environment 105, 493506.CrossRefGoogle Scholar
Navas, A., Machín, J. & Soto, J. (2005 b). Mobility of natural radionuclides and selected major and trace elements along a soil toposequence in the Central Spanish Pyrenees. Soil Science 170, 743757.CrossRefGoogle Scholar
Navas, A., Walling, D. E., Quine, T., Machín, J., Soto, J., Domenech, S. & López-Vicente, M. (2007). Variability in 137Cs inventories and potential climatic and lithological controls in the central Ebro valley, Spain. Journal of Radioanalytical and Nuclear Chemistry 274, 331339.CrossRefGoogle Scholar
Navas, A., Gaspar, L., Quijano, L., López-Vicente, M. & Machín, J. (2012). Patterns of soil organic carbon and nitrogen in relation to soil movement under different land uses in mountain fields (South Central Pyrenees). Catena 94, 4352.CrossRefGoogle Scholar
Navas, A., López-Vicente, M., Gaspar, L. & Machín, J. (2013). Assessing soil redistribution in a complex karst catchment using fallout 137Cs and GIS. Geomorphology 196, 231241.CrossRefGoogle Scholar
Navas, A., López-Vicente, M., Gaspar, L., Palazón, L. & Quijano, L. (2014). Establishing a tracer-based sediment budget to preserve wetlands in Mediterranean mountain agroecosystems (NE Spain). Science of the Total Environment 496, 132143.CrossRefGoogle ScholarPubMed
Nelson, D. W. & Sommers, L. E. (1996). Total carbon, organic carbon, and organic matter. In Methods of Soil Analysis Part 3 – Chemical Methods (Eds Sparks, D. L., Page, A. L., Helmke, P. A., Loeppert, R. H., Soltanpour, P. N., Tabatabai, M. A., Johnston, C. T. & Sumner, M. E.), pp. 9611010. Madison, WI: Soil Science Society of America.Google Scholar
Niemann, L., Jahnke, S. & Feige, G. B. (1989). Radioaktive Kontamination von Pflanzen und Boden nach dem Reaktorunfall in Tschernobyl. Verhandlungen der Gesellschaft für Ökologie. Proceedings of the GfÖ 18, S, 873882.Google Scholar
Novara, A., La Mantia, T., Barbera, V. & Gristina, L. (2012). Paired-site approach for studying soil organic carbon dynamics in a Mediterranean semiarid environment. Catena 89, 17.CrossRefGoogle Scholar
Post, W. M. & Kwon, K. C. (2000). Soil carbon sequestration and land-use change: processes and potential. Global Change Biology 6, 317328.CrossRefGoogle Scholar
Proehl, G. & Hoffman, F. O. (1994). The Interception, Initial and Post Deposition-retention by Vegetation of Dry and Wet Deposited Radionuclide. VAMP Terrestrial Working Group Draft Review Paper. Vienna: IAEA.Google Scholar
Rabenhorst, M. C. (1988). Determination of organic and carbonate carbon in calcareous soils using dry combustion. Soil Science Society of America Journal 52, 965968.CrossRefGoogle Scholar
Ritchie, J. C. & McCarty, G. W. (2003). 137Cesium and soil carbon in a small agricultural watershed. Soil and Tillage Research 69, 4551.CrossRefGoogle Scholar
Ritchie, J. C. & McHenry, J. R. (1975). Fallout Cs-137: a tool in conservation research. Journal of Soil and Water Conservation 30, 283286.Google Scholar
Ritchie, J. C., McCarty, G. W., Venteris, E. R. & Kaspar, T. C. (2005). Using soil redistribution to understand soil organic carbon redistribution and budgets. International Association of Hydrological Sciences Publication 292, 38.Google Scholar
Ritchie, J. C., McCarty, G. W., Venteris, E. R. & Kaspar, T. C. (2007). Soil and soil organic carbon redistribution on the landscape. Geomorphology 89, 163171.CrossRefGoogle Scholar
Rovira, P., Kurz-Besson, C., Coûteaux, M. M. & Vallejo, V. R. (2008). Changes in litter properties during decomposition: a study by differential thermogravimetry and scanning calorimetry. Soil Biology and Biochemistry 40, 172185.CrossRefGoogle Scholar
Rovira, P., Jorba, M. & Romanyà, J. (2010). Active and passive organic matter fractions in Mediterranean forest soils. Biology and Fertility of Soils 46, 355369.CrossRefGoogle Scholar
Rumpel, C. (2011). Carbon storage and organic matter dynamics in grassland soils. In Grassland Productivity and Ecosystem Services (Eds Lemaire, G., Hodgson, J. & Chabbi, A.), pp. 6572. Wallingford, UK: CAB International.CrossRefGoogle Scholar
Scarascia-Mugnozza, G., Oswald, H., Piussi, P. & Radoglou, K. (2000). Forests of the Mediterranean region: gaps in knowledge and research needs. Forest Ecology and Management 132, 97109.CrossRefGoogle Scholar
Schimmack, W., Bunzl, K., Kreutzer, K. & Schierl, R. (1991). Effects of acid irrigation and liming on the migration of radiocesium in a forest soil as observed by field measurements. Science of the Total Environment 101, 181189.CrossRefGoogle Scholar
Sherrod, L. A., Peterson, G. A., Westfall, D. G. & Ahuja, L. R. (2005). Soil organic carbon pools after 12 years in no-till dryland agroecosystems. Soil Science Society of America Journal 69, 16001608.CrossRefGoogle Scholar
Silveira, M. L., Comerford, N. B., Reddy, K. R., Cooper, W. T. & El-Rifai, H. (2008). Characterization of soil organic carbon pools by acid hydrolysis. Geoderma 144, 405414.CrossRefGoogle Scholar
Six, J., Conant, R. T., Paul, E. A. & Paustian, K. (2002). Stabilization mechanisms of soil organic matter: implications for C-saturation of soils. Plant and Soil 241, 155176.CrossRefGoogle Scholar
Soil Survey Staff (1999). Keys to Soil Taxonomy, 8th edn.Blacksburg, VA: Pocahontas Press, Soil Conservation Service USDA.Google Scholar
Thevenot, M., Dignac, M. F. & Rumpel, C. (2010). Fate of lignins in soils: a review. Soil Biology and Biochemistry 42, 12001211.CrossRefGoogle Scholar
Torbert, H. A., Potter, K. N. & Morrison, J. E. Jr. (1998). Tillage intensity and crop residue effects on nitrogen and carbon cycling in a Vertisol. Communications in Soil Science and Plant Analysis 29, 717727.CrossRefGoogle Scholar
Valbuena-Carabaña, M., López de Heredia, U., Fuentes-Utrilla, P., González-Doncel, I. & Gil, L. (2010). Historical and recent changes in the Spanish forests: a socio-economic process. Review of Palaeobotany and Palynology 162, 492506.CrossRefGoogle Scholar
Vandenbygaart, A. J., Gregorich, E. G. & Angers, D. A. (2003). Influence of agricultural management on soil organic carbon: a compendium and assessment of Canadian studies. Canadian Journal of Soil Science 83, 363380.CrossRefGoogle Scholar
Walling, D. E. & Quine, T. A. (1990). Calibration of caesium-137 measurements to provide quantitative erosion rate data. Land Degradation and Rehabilitation 2, 161175.CrossRefGoogle Scholar
Walling, D. E., He, Q. & Quine, T. A. (1995). Use of Caesium-137 and Lead-210 as tracers in soil erosion investigations. In Tracer Technologies for Hydrological Systems: Proceedings of a Symposium, Boulder, CO, USA, July 1995 (Ed. Leibundgut, C.), pp. 163–172. IAHS Publication 229. Wallingford, UK: IAHS.Google Scholar
Wang, D. & Anderson, D. W. (1998). Direct measurement of organic carbon content in soils by the Leco CR-12 carbon analyzer. Communications in Soil and Plant Analysis 29, 1521.CrossRefGoogle Scholar
WRB (2014). World Reference Base for Soil Resources 2014. International Soil Classification System for Naming Soils and Creating Legends for Soil Maps. World Soil Resources Reports No. 106. Rome: FAO.Google Scholar
Xu, J. M., Cheng, H. H., Koskinen, W. C. & Molina, J. A. E. (1997). Characterization of potentially bioreactive soil organic carbon and nitrogen by acid hydrolysis. Nutrient Cycling in Agroecosystems 49, 267271.CrossRefGoogle Scholar
Zhang, M., Zhang, X. K., Liang, W. J., Jiang, Y., Dai, G. H., Wang, X. G. & Han, S. J. (2011). Distribution of soil organic carbon fractions along the altitudinal gradient in Changbai Mountain, China. Pedosphere 21, 615620.CrossRefGoogle Scholar