Skip to main content Accessibility help
×
×
Home

Life-cycle assessment of biogas production under the environmental conditions of northern Germany: greenhouse gas balance

  • S. CLAUS (a1), F. TAUBE (a1), B. WIENFORTH (a2), N. SVOBODA (a3), K. SIELING (a2), H. KAGE (a2), M. SENBAYRAM (a4), K. DITTERT (a4), D. GERICKE (a2), A. PACHOLSKI (a2) and A. HERRMANN (a1)...
Summary

A considerable expansion of biogas production in Germany, paralleled by a strong increase in maize acreage, has caused growing concern that greenhouse gas (GHG) emissions during crop substrate production might counteract the GHG emission saving potential. Based on a 2-year field trial, a GHG balance was conducted to evaluate the mitigation potential of regionally adapted cropping systems (continuous maize, maize-wheat-Italian ryegrass, perennial ryegrass ley), depending on nitrogen (N) level and N type. Considering the whole production chain, all cropping systems investigated contributed to the mitigation of GHG emissions (6·7–13·3 t CO2 eq/ha), with continuous maize revealing a carbon dioxide (CO2) saving potential of 55–61% compared with a fossil energy mix reference system. The current sustainability thresholds in terms of CO2 savings set by the EU Renewable Energy Directive could be met by all cropping systems (48–76%). Emissions from crop production had the largest impact on the mitigation effect (⩾50%) unless the biogas residue storage was not covered. The comparison of N fertilizer types showed less pronounced differences in GHG mitigation potential, whereas considerable site effects were observed.

Copyright
Corresponding author
* To whom all correspondence should be addressed. Email: sclaus@gfo.uni-kiel.de
References
Hide All
Adler, P. R., Del Grosso, S. J. & Parton, W. J. (2007). Life-cycle assessment of net greenhouse-gas flux for bioenergy cropping systems. Ecological Applications 17, 675691.
Bachmaier, J., Effenberger, M. & Gronauer, A. (2010). Greenhouse gas balance and resource demand of biogas plants in agriculture. Engineering In Life Sciences 10, 560569.
Bleken, M. A., Herrmann, A., Haugen, L. E., Taube, F. & Bakken, L. (2009). SPN: a model for the study of soil–plant nitrogen fluxes in silage maize cultivation. European Journal of Agronomy 30, 283295.
Bockisch, F. J. (2000). Bewertung von Verfahren der ökologischen und konventionellen landwirtschaftlichen Produktion im Hinblick auf den Energieeinsatz und bestimmte Schadgasemissionen: Studie als Sondergutachten im Auftrag des Bundesministeriums für Ernährung, Landwirtschaft und Forsten, Bonn. Landbauforschung Völkenrode, Sonderheft 211, S. 1-206. Braunschweig, Germany: Bundesforschungsanstalt für Landwirtschaft.
Börjesson, P. & Berglund, M. (2006). Environmental systems analysis of biogas systems – Part I: fuel-cycle emissions. Biomass and Bioenergy 30, 469485.
Cherubini, F., Bird, N. D., Cowie, A., Jungmeier, G., Schlamadinger, B. & Woess-Gallasch, S. (2009). Energy- and greenhouse gas-based LCA of biofuel and bioenergy systems: key issues, ranges and recommendations. Resources, Conservation and Recycling 53, 434447.
Dittert, K., Senbayram, M., Wienforth, B., Kage, H. & Muehling, K. H. (2009). Greenhouse Gas Emissions in Biogas Production Systems. The Proceedings of the International Plant Nutrition Colloquium XVI. Davis, CA, USA: UC Davis.
Dobbie, K. E. & Smith, K. A. (2001). The effects of temperature, water-filled pore space and land use on N2O emissions from an imperfectly drained gleysol. European Journal of Soil Science 52, 667673.
Edelmann, W., Baier, U. & Engeli, H. (2005). Environmental aspects of the anaerobic digestion of the organic fraction of municipal solid wastes and of solid agricultural wastes. Water Science and Technology 52, 203208.
Eder, B., Papst, C., Darnhofer, B., Eder, J., Schmid, H. & Hülsbergen, K. J. (2009). Energie- und CO2-Bilanz für Silomais zur Biogaserzeugung vom Anbau bis zur Stromeinspeisung. In Internationale Wissenschaftstagung Biogas Science 2009 – Band 3 (Eds Bayerische Landesanstalt für Landwirtschaft), pp. 717719. Freising, Germany: Landesanstalt für Landwirtschaft.
EEG (2012). Gesetz fur den Vorrang Erneuerbarer Energien. Konsolidierte Fassung des Gesetzestextes in der ab 1. Januar 2012 geltenden Fassung, 2012. Berlin: EEG.
European Parliament (2009). Directive 2009/28/EC of the European Parliament and of the Council on the promotion of the use of energy from renewable sources and amending and subsequently repealing Directives 2001/77/EC and 2003/30/EC. Official Journal of the European Union L140, 1662.
Fachagentur Nachwachsende Rohstoffe e.V. (FNR) (2010). Biogas-Messprogramm II, 61 Biogasanlagen im Vergleich. Johann Heinrich von Thünen-Institut (vTI). Gülzow, Germany: Media Cologne Kommunikationsmedien GmbH.
Fachverband Biogas e.V. (2013). Branchenzahlen 2012 und Branchenentwicklung 2012/2013. Freising, Germany: Fachverband Biogas e.V. Available from: http://www.biogas.org/edcom/webfvb.nsf/id/DE_Branchenzahlen (verified 7 August 2013).
Felten, D., Fröba, N., Fries, J. & Emmerling, C. (2013). Energy balances and greenhouse gas-mitigation potentials of bioenergy cropping systems (Miscanthus, rapeseed, and maize) based on farming conditions in Western Germany. Renewable Energy 55, 160174.
Gaillard, G., Hausheer, J. & Crettaz, P. (1997). Umweltinventar der landwirtschaftlichen Inputs im Pflanzenbau. Daten für die Erstellung von Energie- und Ökobilanz der Landwirtschaft. FAT-Schriftenreihe 46. Tänikon Ettenhausen, Switzerland: FAT.
Gericke, D. (2009). Measurement and modelling of ammonia emissions after field application of biogas slurries. Ph.D. Thesis, Kiel University, Germany.
Gerin, P. A., Vliegen, F. & Jossart, J. -M. (2008). Energy and CO2 balance of maize and grass as energy crops for anaerobic digestion. Bioresource Technology 99, 26202627.
Hülsbergen, K. -J., Feil, B., Biermann, S., Rathke, G. -W., Kalk, W. -D. & Diepenbrock, W. (2001). A method of energy balancing in crop production and its application in a long-term fertilizer trial. Agriculture, Ecosystems and Environment 86, 303321.
Intergovernmental Panel on Climate Change (IPCC) (2006). IPCC Guidelines for National Greenhouse Gas Inventories, Agriculture, Forestry and Other Land Use (Eds Eggleston, H. S., Buendia, L., Miwa, K., Ngara, T. & Tanabe, K.). Hayama, Japan: IGES.
Jury, C., Benetto, E., Koster, D., Schmitt, B. & Welfring, J. (2010). Life Cycle Assessment of biogas production by monofermentation of energy crops and injection into the natural gas grid. Biomass and Bioenergy 34, 5466.
Kaltschmitt, M. & Reinhardt, G. (1997). Nachwachsende Energieträger: Grundlagen, Verfahren, ökologische Bilanzierung. Braunschweig/Wiesbaden, Germany: Friedr. Vieweg & Sohn Verlagsgesellschaft.
Klemedtsson, L., Von Arnold, K., Weslien, P. & Gundersen, P. (2005). Soil CN ratio as a scalar parameter to predict nitrous oxide emissions. Global Change Biology 11, 11421147.
Kuratorium für Technik und Buwesen in der Landwirtschaft (KTBL) (2011). KTBL-Datenbank Kalkulationsdaten: Pflanzenproduktion. Darmstadt, Germany: KTBL. Available from: http://www.ktbl.de/index.php?id=813 (verified 8 August 2013).
Meyer-Aurich, A., Schattauer, A., Hellebrand, H. J., Klauss, H., Plöchl, M. & Berg, W. (2012). Impact of uncertainties on greenhouse gas mitigation potential of biogas production from agricultural resources. Renewable Energy 37, 277284.
Öko Institut (2008). Globales Emissions-Modell integrierter Systeme (GEMIS), Version 4.5. Darmstadt, Germany: IINAS. Available from: http://www.iinas.org/gemis-de.html (verified 8 August 2013).
Patyk, A. & Reinhardt, G. A. (1997). Düngemittel-, Energie und Stoffstrombilanzen. Braunschweig/Wiesbaden, Germany: Viehweg-Verlag.
Plöchl, M., Heiermann, M., Linke, B. & Schelle, H. (2009). Biogas crops – Part II: ecological benefit of using field crops for anaerobic digestion. Agricultural Engineering International: the CIGR Ejournal XI, Manuscript number 1086.
Poeschl, M., Ward, S. & Owende, P. (2010). Evaluation of energy efficiency of various biogas production and utilization pathways. Applied Energy 87, 33053321.
Reinhardt, G. A. (1993). Energie- und CO2-Bilanzierung nachwachsender Rohstoffe. Theoretische Grundlagen und Fallstudie Raps. Wiesbaden, Germany: Verlag Vieweg.
Scholwin, F., Michel, J., Schröder, G. & Kalies, M. (2006). Ökologische Analyse einer Biogasnutzung aus nachwachsenden Rohstoffen. Leipzig, Germany: Institut für Energetik und Umwelt gemeinnützige GmbH.
Scholz, V. (1995). Energiebilanz für Festbrennstoffe. Forschungsbericht 95/3. Landtechnik 2/96, 8283.
Senbayram, M. (2009). Greenhouse gas emission from soils of bioenergy crop production systems and regulating factors: the biogas expert project. Ph.D. Thesis, Kiel University, Germany.
Sieling, K., Herrmann, A., Wienforth, B., Taube, F., Ohl, S., Hartung, E. & Kage, H. (2013). Biogas cropping systems: short term response of yield performance and N use efficiency to biogas residue application. European Journal of Agronomy 47, 4454.
Šimek, M. & Cooper, J. E. (2002). The influence of soil pH on denitrification: progress towards the understanding of this interaction over the last 50 years. European Journal of Soil Science 53, 345354.
Simon, K-H. (1998). Hinweise zu den in den Beispielszenarien der Studie- Klimarelevanz von Landwirtschaft und Ernährung- verwendeten Kenngrößen. Kassel, Germany: Wissenschaftliches Zentrum für Umweltsystemforschung.
Sponagel, H., Grottenthaler, W., Hartmann, K. -J., Hartwich, R., Janetzko, P., Joisten, H., Kühn, D., Sabel, K. -J. & Traidl, R. (2005). Bodenkundliche Kartieranleitung. Stuttgart: Schweizerbart'sche Verlagsbuchhandlung.
Svoboda, N. (2011). Auswirkung der Gärrestapplikation auf das Stickstoffauswaschungs-potential von Anbausystemen zur Substratproduktion. Ph.D. Thesis, Kiel University, Germany.
Svoboda, N., Taube, F., Kluß, C., Wienforth, B., Kage, H., Ohl, S., Hartung, E. & Herrmann, A. (2013). Crop production for biogas and water protection – a trade-off? Agriculture, Ecosystems and Environment 177, 3647.
Vetter, A., Heiermann, M. & Toews, T. (2009). Anbausysteme für Energiepflanzen: Optimierte Fruchtfolgen und effiziente Lösungen. Frankfurt: DLGVerlags-GmbH.
Verband Deutscher Landwirtschaftlicher Untersuchungs- und Forschungsanstalten (VDLUFA) (2004). Standpunkt Humusbilanzierung. Methode zur Beurteilung und Bemessung der Humusversorgung von Ackerland. Bonn, Germany: VDLUFA-Verlag GmbH.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

The Journal of Agricultural Science
  • ISSN: 0021-8596
  • EISSN: 1469-5146
  • URL: /core/journals/journal-of-agricultural-science
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed