Skip to main content
×
×
Home

Modelling cross-species feed intake responses to thermal stress

  • R. R. WHITE (a1) (a2) and M. D. HANIGAN (a2)
Summary

The objectives of the current study were to compare and model feed intake responses to ambient temperature across species and to assess opportunities to use cross-species (CS) data to parameterize models when species-specific (SS) data were limited. Literature searches were conducted to identify studies reporting intake during thermal stress compared with thermoneutral (TN) conditions. The resulting data set comprised 614 treatment means from 108 studies on livestock responses to thermal stress. An analysis of variance was conducted with the CS data set to identify the effects of species, temperature and species by temperature interactions on intake as (fractional feed intake; FFI). Four models were derived from the CS data set and root mean squared prediction error (RMSPE) and concordance correlation coefficients (CCC) of these models were compared with models of the same form derived from SS data sets. Models used explanatory variables for (1) duration of exposure; (2) mean temperature; (3) minimum and maximum temperatures; or (4) difference between minimum and maximum temperatures. An additional model accounting for temperature and stage of production was derived from the SS data. Analysis of variance demonstrated that the species by temperature interaction did not have a significant effect on FFI. Across species, intake decreased with temperature. Notably, all species demonstrated a constant decrease in intake across the TN zone indicating the previous assumption of constant intake during thermoneutrality may be not fully valid. When compared on a SS basis, SS-derived models had marginally lower RMSPE and higher CCC when compared with models derived from the CS data sets. The model fit with production data had the lowest RMSPE and highest CCC within the study. When compared over temperature ranges with minimal data available in some species (e.g., cold stress), using CS models often resulted in decreased RMSPE and improved CCC when compared with SS models. Although fitting models based on SS data allows for incorporating unique covariates, like level of production, fitting responses based on CS data can help to improve model estimates when knowledge gaps exist.

Copyright
Corresponding author
*To whom all correspondence should be addressed. Email: rrwhite@vt.edu
References
Hide All
Arrillaga, C. G., Henning, W. & Miller, R. (1952). The effects of environmental temperature and relative humidity on the acclimation of cattle to the tropics. Journal of Animal Science 11, 5060.
Aschoff, J. (1981). Thermal conductance in mammals and birds: its dependence on body size and circadian phase. Comparative Biochemistry and Physiology Part A: Physiology 69, 611619.
Baile, C. A. & Forbes, J. M. (1974). Control of feed intake and regulation of energy balance in ruminants. Physiological Reviews 54, 160214.
Baldwin, R. L. (1995). Modeling Ruminant Digestion and Metabolism. London: Chapman and Hall.
Becker, B. A., Klir, J. J., Matteri, R. L., Spiers, D. E., Ellersiek, M. & Misfeldt, M. L. (1997). Endocrine and thermoregulatory responses to acute thermal exposures in 6-month-old pigs reared in different neonatal environments. Journal of Thermal Biology 22, 8793.
Berman, A. (2011). Invited review: are adaptations present to support dairy cattle productivity in warm climates? Journal of Dairy Science 94, 21472158.
Bernabucci, U., Lacetera, N., Baumgard, L. H., Rhoads, R. P., Ronchi, B. & Nardone, A. (2010). Metabolic and hormonal acclimation to heat stress in domesticated ruminants. Animal 4, 11671183.
Berthon, D., Herpin, P. & Le Dividich, J. (1994). Shivering thermogenesis in the neonatal pig. Journal of Thermal Biology 19, 413418.
Brouček, J., Letkovičová, M. & Kovalčuj, K. (1991). Estimation of cold stress effect on dairy cows. International Journal of Biometeorology 35, 2932.
Brobeck, J. R. (1948). Food intake as a mechanism of temperature regulation. Yale Journal of Biology and Medicine 20, 545552.
Bukowiecki, L., Collet, A. J., Follea, N., Guay, G. & Jahjah, L. (1982). Brown adipose tissue hyperplasia: a fundamental mechanism of adaptation to cold and hyperphagia. American Journal of Physiology 242, E353E359.
Chaffee, R. R. J. & Roberts, J. C. (1971). Temperature acclimation in birds and mammals. Annual Review of Physiology 33, 155202.
Close, W. H. & Mount, L. E. (1978). The effects of plane of nutrition and environmental temperature on the energy metabolism of the growing pig. 1. Heat loss and critical temperature. British Journal of Nutrition 40, 413421.
Cooper, M. A. & Washburn, K. W. (1998). The relationships of body temperature to weight gain, feed consumption, and feed utilization in broilers under heat stress. Poultry Science 77, 237242.
Dale, N. M. & Fuller, H. L. (1980). Effect of diet composition on feed intake and growth of chicks under heat stress. II. Constant vs. cycling temperatures. Poultry Science 59, 14341441.
De Basilio, V., Vilarino, M., Yahav, S. & Picard, M. (2001). Early age thermal conditioning and a dual feeding program for male broilers challenged by heat stress. Poultry Science 80, 2936.
Denbow, D. M. (1985). Food intake control in birds. Neuroscience and Biobehavioral Reviews 9, 223232.
Ford, A. (2009). Modeling the Environment, 2nd edn.Washington, DC: Island Press Publishing.
Franco-Jimenez, D. J., Scheideler, S. E., Kittok, R. J., Brown-Brandl, T. M., Robeson, L. R., Taira, H. & Beck, M. M. (2007). Differential effects of heat stress in three strains of laying hens. Journal of Applied Poultry Research 16, 628634.
Hamilton, C. L. (1963). Interactions of food intake and temperature regulation in the rat. Journal of Comparative and Physiological Psychology 56, 476488.
Hardy, J. D. & Du Bois, E. F. (1937 a). Basal metabolism, radiation, convection and vaporization at temperatures of 22 to 35 °C. Journal of Nutrition 15, 477497.
Hardy, J. D. & Du Bois, E. F. (1937 b). Regulation of heat loss from the human body. Proceedings of the National Academy of Sciences USA 23, 624631.
Herreid, C. F. II & Kessel, B. (1967). Thermal conductance in birds and mammals. Comparative Biochemistry and Physiology 21, 405414.
Hicks, T. A., McGlone, J. J., Whisnant, C. S., Kattesh, H. G. & Norman, R. L. (1998). Behavioral, endocrine, immune, and performance measures for pigs exposed to acute stress. Journal of Animal Science 76, 474483.
Hohtola, E. (2004). Shivering thermogenesis in birds and mammals. In Life in the Cold: Evolution, Mechanisms, Adaptation, and Application. 12th International Hibernation Symposium (Eds Barnes, B. M. & Carey, H. V.), pp. 241252. Biological Papers of the University of Alaska, no. 27. Fairbanks, Alaska: Institute of Arctic Biology, University of Alaska.
Horowitz, K. A., Scott, N. R., Hillman, P. E. & van Tienhoven, A. (1978). Effects of feathers on instrumental thermoregulatory behavior in chickens. Physiology and Behavior 21, 233238.
Hurvich, C. M. & Tsai, C. L. (1993). A corrected akaike information criterion for vector autoregressive model selection. Journal of Time Series Analysis 14, 271279.
Kerr, B. J., Yen, J. T., Nienaber, J. A. & Easter, R. A. (2003). Influences of dietary protein level, amino acid supplementation and environmental temperature on performance, body composition, organ weights and total heat production of growing pigs. Journal of Animal Science 81, 19982007.
Ketelaars, J. J. M. H. & Tolkamp, B. J. (1992). Toward a new theory of feed intake regulation in ruminants 1. Causes of differences in voluntary feed intake: critique of current views. Livestock Production Science 30, 269296.
Kingma, B., Frijns, A. & van Marken Lichtenbelt, W. (2012). The thermoneutral zone: implications for metabolic studies. Frontiers in Bioscience 4, 19751985.
Lin, L. I-K. (1989). A concordance correlation coefficient to evaluate reproducibility. Biometrics 45, 255268.
Lopez, J., Jesse, G. W., Becker, B. A. & Ellersieck, M. R. (1991). Effects of temperature on the performance of finishing swine: I. Effects of a hot, diurnal temperature on average daily gain, feed intake, and feed efficiency. Journal of Animal Science 69, 18431849.
McGuire, M. A., Beede, D. K., Collier, R. J., Buonomo, F. C., DeLorenzo, M. A., Wilcox, C. J., Huntington, G. B. & Reynolds, C. K. (1991). Effects of acute thermal stress and amount of feed intake on concentrations of somatotropin, insulin-like growth factor (igf)-i and igf-ii, and thyroid hormones in plasma of lactating holstein cows. Journal of Animal Science 69, 20502056.
McMinn, J. E., Baskin, D. G. & Schwartz, M. W. (2000). Neuroendocrine mechanisms regulating food intake and body weight. Obesity Reviews 1, 3746.
Moraes, V. M. B., Malheiros, R. D., Bruggeman, V., Collin, A., Tona, K., Van As, P., Onagbesan, O. M., Buyse, J., Decuypere, E. & Macari, M. (2003). Effect of thermal conditioning during embryonic development on aspects of physiological responses of broilers to heat stress. Journal of Thermal Biology 28, 133140.
Nagy, K. A., Girard, I. A. & Brown, T. K. (1999). Energetics of free-ranging mammals, reptiles, and birds. Annual Review of Nutrition 19, 247277.
National Animal Nutrition Program (2014 a). Animal Performance Information, Environmental Stress. NANP. Available from: https://nanp-nrsp-9.org/perf/search (verified 22 September 2015).
National Animal Nutrition Program (2014 b). Code Examples, Statistical Analyses. NANP. Available online from: https://nanp-nrsp-9.org/resources/examples/2 (verified 22 September 2015).
National Research Council (2000). Nutrient Requirements of Beef Cattle, 7th revised edn.Washington, DC: National Academies Press.
National Research Council (2001). Nutrient Requirements of Dairy Cattle, 7th revised edn.Washington, DC: National Academies Press.
National Research Council (2012). Nutrient Requirements of Swine, 11th revised edn.Washington, DC: National Academies Press.
Nyachoti, C. M., Zijlstra, R. T., de Lange, C. F. M. & Patience, J. F. (2004). Voluntary feed intake in growing-finishing pigs: a review of the main determining factors and potential approaches for accurate predictions. Canadian Journal of Animal Science 84, 549566.
Patience, J. F., Umboh, J. F., Chaplin, R. K. & Nyachoti, C. M. (2005). Nutritional and physiological responses of growing pigs exposed to a diurnal pattern of heat stress. Livestock Production Science 96, 205214.
Pearce, S. C., Gabler, N. K., Ross, J. W., Escobar, J., Patience, J. F., Rhoads, R. P. & Baumgard, L. H. (2013). The effects of heat stress and plane of nutrition on metabolism in growing pigs. Journal of Animal Science 91, 21082118.
R Development Core Team (2014). R: A Language and Environment for Statistical Computing, version 3.1.0. Vienna, Austria: R Foundation for Statistical Computing.
Renaudeau, D., Huc, E. & Noblet, J. (2007). Acclimation to high ambient temperature in large white and Caribbean creole growing pigs. Journal of Animal Science 85, 779790.
Renaudeau, D., Collin, A., Yahav, S., de Basilio, V., Gourdine, J. L. & Collier, R. J. (2012). Adaptation to hot climate and strategies to alleviate heat stress in livestock production. Animal 6, 707728.
Rubner, M. (1982). The Laws of Energy Conservation in Nutrition. London: Academic Press, Inc.
Segura, J. C., Feddes, J. J. R. & Zuidhof, M. J. (2006). Midday and night time cooling of broiler chickens. Journal of Applied Poultry Research 15, 2839.
Sonna, L. A., Fujita, J., Gaffin, S. L. & Lilly, C. M. (2002). Invited review: effects of heat and cold stress on mammalian gene expression. Journal of Applied Physiology 92, 17251742.
Spiers, D. E., Spain, J. N., Sampson, J. D. & Rhoads, R. P. (2004). Use of physiological parameters to predict milk yield and feed intake in heat-stressed dairy cows. Journal of Thermal Biology 29, 759764.
Stahly, T. S. & Cromwell, G. L. (1979). Effect of environmental temperature and dietary fat supplementation on the performance and carcass characteristics of growing and finishing swine. Journal of Animal Science 49, 14781488.
Tzschentke, B. (2007). Attainment of thermoregulation as affected by environmental factors. Poultry Science 86, 10251036.
Verhagen, J. M. F. (1987). Acclimation of growing pigs to climatic environment. Ph.D. Thesis, Agricultural University Wageningen, Wageningen, The Netherlands.
Waterman, M. S. & Lander, E. S. (1995). Calculating the Secrets of Life: Contributions of the Mathematical Sciences to Molecular Biology. Washington, DC: National Academies Press.
Wekstein, D. R. & Zolman, J. F. (1971). Cold stress regulation in young chickens. Poultry Science 50, 5661.
White, R. R., Miller, P. S. & Hanigan, M. D. (First Look article). Evaluating equations estimating change in swine feed intake during heat and cold stress. Journal of Animal Science. doi: 10.2527/jas2015-9271.
Willmott, C. J. (1981). On the validation of models. Physical Geography 2, 184194.
Woods, S. C., Seeley, R. J., Porte, D. & Schwartz, M. W. (1998). Signals that regulate food intake and energy homeostasis. Science 280, 13781383.
Xin, H. & DeShazer, J. A. (1991). Swine responses to constant and modified diurnal cyclic temperatures. Transactions of the American Society of Agricultural and Biological Engineers 34, 25332540.
Yahav, S. & Hurwitz, S. (1996). Induction of thermotolerance in male broiler chickens by temperature conditioning at an early age. Poultry Science 75, 402406.
Young, B. A. (1981). Cold stress as it affects animal production. Journal of Animal Science 52, 154163.
Young, B. A. (1983). Ruminant cold stress: effect on production. Journal of Animal Science 57, 16011607.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

The Journal of Agricultural Science
  • ISSN: 0021-8596
  • EISSN: 1469-5146
  • URL: /core/journals/journal-of-agricultural-science
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed