Hostname: page-component-76dd75c94c-qmf6w Total loading time: 0 Render date: 2024-04-30T08:39:43.511Z Has data issue: false hasContentIssue false

Production improvement through phosphorus fertilization and legume introduction in grazed native pastures of Uruguay

Published online by Cambridge University Press:  03 November 2015

A. DEL PINO*
Affiliation:
Departamento de Suelos y Aguas, Facultad de Agronomía, Universidad de la República, Garzón 780, Montevideo, Uruguay
T. RODRÍGUEZ
Affiliation:
Estación Experimental San Antonio, Facultad de Agronomía, Ruta 31, Salto, Uruguay
J. ANDIÓN
Affiliation:
Estación Experimental San Antonio, Facultad de Agronomía, Ruta 31, Salto, Uruguay
*
*To whom all correspondence should be addressed. Email: amabelia@fagro.edu.uy

Summary

The objective of the current study was to quantify the response of pasture to phosphorus (P) fertilizer application and legume introduction, by measuring herbage yield, nitrogen (N) and P content, and weight gain of calves in native pastures of Uruguay. Quantitative relationships between pasture characteristics and post-weaning daily live weight gain (DLWG) were also examined. The treatments studied were native grassland (NG) and improved pasture, oversown with Lotus corniculatus L. and Trifolium repens L. with annual applications of either 13 and 26 kg P/ha. From 1996 to 2001 the treatments were evaluated each year with a new group of calves. Total herbage yields of the oversown pastures were not always higher than NG in the initial years, but legume production increased, although without significant differences between P rates on legume or total yield. This was also reflected in the N and P status of the swards. In the last 2 years legume proportion had declined to <0·1, but total herbage yield was significantly higher in the improved pastures. The average DLWG over the 6 years of measurements were 0·319, 0·478 and 0·586 kg/day for NG, P1 and P2, respectively, with average total live weight gain increased 1·8- and 2·5-fold by the legume introduction and annual addition of 13 and 26 kg P/ha, respectively. The study demonstrated that the evaluation of pasture response to P application should not be limited to assessing forage yield increase. Phosphorus availability in the herbage was a better predictor of animal performance than pasture yield. The study highlights that the benefits of oversowing and fertilizer inputs are short-lived, as withholding of fertilizer in the last 2 years resulted in a loss of sown legumes and decline in animal production.

Type
Animal Research Papers
Copyright
Copyright © Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Avondo, M., Secchiari, P., Battaglini, L. M., Bonanno, A. & Pulina, G. (2013). Soil, pasture and animal product quality. Italian Journal of Agronomy 8, 141148.CrossRefGoogle Scholar
Bandinelli, D. G., Gatiboni, L. C., Trindade, J. P. P., de Quadros, F. L. F., Kaminsky, J., Flores, J. P. C. & Saggin, A. (2005). Composição florística de pastagem natural afetada por fontes de fósforo, calagem e introdução de espécies forrageiras de estação fria (Botanical composition of natural pasture as afected [sic] by phosphorus sources, lime and introduction of winter forage species). Ciência Rural 35, 8491.CrossRefGoogle Scholar
Bemhaja, M. (1998). Mejoramiento de campo: fertilización fosfatada. In Seminario de Actualización en Tecnologías para Basalto. INIA Serie Técnica 102 (Ed. Berretta, E. J.), pp. 7582. Montevideo, Uruguay: INIA.Google Scholar
Berretta, E. J. (1998). Contenido de minerales en pasturas naturales de basalto. I. Especies nativas. In Seminario de Actualizaciónen Tecnologías para Basalto. INIA Serie Técnica 102 (Ed. Berreta, E. J.), pp. 99111. Montevideo, Uruguay: INIA.Google Scholar
Birkelo, C. P., Johnson, D. E. & Phetteplace, H. P. (1991). Maintenance requirements of beef cattle as affected by season on different planes of nutrition. Journal of Animal Science 69, 12141222.CrossRefGoogle ScholarPubMed
Carámbula, M. (1996). Pasturas Naturales Mejoradas. Montevideo, Uruguay: Hemisferio Sur.Google Scholar
Coates, D. B. (1994). The effect of phosphorus as fertiliser or supplement on pasture and cattle productivity in the semi-arid tropics of North Queensland. Tropical Grasslands 28, 90108.Google Scholar
Coates, D. B., Kerridge, P. C., Miller, C. P. & Winter, W. H. (1990). Phosphorus and beef production in northern Australia. 7. The effect of phosphorus on the composition, yield and quality of legume-based pasture and their relation to animal production. Tropical Grasslands 24, 209220.Google Scholar
Del Pino, A. & Hernández, J. (2002). Ciclaje de fósforo por animales en pastoreo en campo natural y mejoramientos con leguminosas sobre suelos de basalto. Agrociencia Uruguay 6, 4752.Google Scholar
Dirección Nacional de Meteorología Uruguay (2015). Estadísticas Climatológicas. Montevideo, Uruguay: Instituto Uruguayo de Meteorología. Available from: http://www.meteorologia.com.uy/ServCli/estadisticasClimatologicas (verified 30 April 2015).Google Scholar
Durán, A. & García Préchac, F. (2007). Suelos del Uruguay: Origen, Clasificación, Manejo y Conservación; Volumen I. Montevideo, Uruguay: Hemisferio Sur.Google Scholar
Ferreira, E. T., Nabinger, C., Elejalde, D. A. G., de Freitas, A. K., Carassai, I. J. & Schmitt, F. (2011). Fertilization and oversowing on natural grassland: effects on pasture characteristics and yearling steers performance. Revista Brasileira de Zootecnia 40, 20392047.CrossRefGoogle Scholar
Haan, M. M., Russell, J. R., Kovar, J. L., Powers, W. J. & Benning, J. L. (2007). Effects of forage management on pasture productivity and phosphorus content. Rangeland Ecology and Management 60, 311318.CrossRefGoogle Scholar
Hernández, J. & Meurer, E. J. (1998). Adsorção de fósforo e sua relação com formas de ferro em dez solos do Uruguai. Revista Brasileira de Ciencia du Solo 22, 223230.CrossRefGoogle Scholar
Hernández, J. & Zamalvide, J. P. (1998). Procesos de retención de fósforo por los suelos evaluados a través de parámetros de suelo y planta. Agrociencia Uruguay 2, 4863.Google Scholar
Hill, J. O., Coates, D. B., Whitebread, A. M., Clem, R. L., Robertson, M. J. & Pengelly, B. C. (2009). Seasonal changes in pasture quality and diet selection and their relationship with live weight gain of steers grazing tropical grass and grass–legume pastures in northern Australia. Animal Production Science 49, 983993.CrossRefGoogle Scholar
Jones, R. J. (2003). Effects of sown grasses and stocking rates on pasture and animal production from legume-based pastures in the seasonally dry tropics. Tropical Grasslands 37, 129150.Google Scholar
Karn, J. F. (2001). Phosphorus nutrition of grazing cattle: a review. Animal Feed Science and Technology 89, 133153.CrossRefGoogle Scholar
Ledgard, S. F. (2001). Nitrogen cycling in low input legume–based agriculture, with emphasis on legume/grass pastures. Plant and Soil 228, 4359.CrossRefGoogle Scholar
Lezama, F., Altesor, A., Paruelo, J. M. & León, R. J. C. (2006). Heterogeneidad de la vegetación en pastizales naturales de la región basáltica de Uruguay. Ecología Austral 16, 167182.Google Scholar
Li, C., Hao, X., Willms, W. D., Zhao, M. & Han, G. (2009). Seasonal response of herbage production and its nutrient and mineral contents to long-term cattle grazing on a Rough Fescue grassland. Agriculture, Ecosystems and Environment 132, 3238.CrossRefGoogle Scholar
Mackay, A. D. & Lambert, M. G. (2011). Long-term changes in soil fertility and pasture production under no, low and high phosphorus fertiliser inputs. Proceedings of the New Zealand Grassland Association 73, 3742.CrossRefGoogle Scholar
Mallarino, A. P., Wedin, W. F., Perdomo, C. H., Goyenola, R. S. & West, C. P. (1990). Nitrogen transfer from white clover, red clover, and birdsfoot trefoil to associated grass. Agronomy Journal 82, 790795.CrossRefGoogle Scholar
McIvor, J. G., Guppy, C. & Probert, M. E. (2011). Phosphorus requirements of tropical grazing systems: the northern Australian experience. Plant and Soil 349, 5567.CrossRefGoogle Scholar
Mazza, L. D. M., Motta, A. C. V., de Moraes, A., Vezzani, F. M., Adami, P. F. & Rabel, D. D. O. (2012). Forage yield and quality on soil subjected to phosphorus rates in subtropical grassland of Brazil. Revista Brasileira de Zootecnia 41, 11001109.CrossRefGoogle Scholar
Mila, F. & Tambler, A. (2011). Comportamiento del sector carne vacuna en 2011 y perspectivas para 2012. In OPYPA. Anuario 2011 pp. 3753. Montevideo, Uruguay: MGAP.Google Scholar
NRC National Research Council (1996). Nutrient Requirements of Beef Cattle, 7th edn, Washington, D.C: National Academy Press.Google Scholar
Pallarés, O. R., Berretta, E. J. & Maraschin, G. E. (2005). The South American campos ecosystem. In Grasslands of the World (Eds Suttie, J., Reynolds, S. G. & Batello, C.), pp. 171219. Plant Production and Protection Series no. 34. Rome: FAO.Google Scholar
Soca, P., Claramunt, M. & Do Carmo, M. (2007). Sistemas de cría vacuna en ganadería pastoril sobre campo nativo sin subsidios: propuesta tecnológica para estabilizar la producción de terneros con intervenciones de bajo costo y de fácil implementación. Revista Ciencia Animal 3, 322.Google Scholar
Soil Survey Staff (2006). Keys to Soil Taxonomy, 10th edn, Washington, DC: United States Department of Agriculture, Natural Resources Conservation Service.Google Scholar
Suttle, N. F. (2010). Mineral Nutrition of Livestock, 4th edn, Wallingford, UK: CAB International.CrossRefGoogle Scholar
Wunsch, C., Barcellos, J. O. J., Prates, Ê. R., da Costa, E. C., Montanholi, Y. R. & Brandao, F. (2006). Macro minerals to beef cattle in the native pastures of Campos de Cima da Serra-RS, Brazil. Ciência Rural 36, 12581264.CrossRefGoogle Scholar