Skip to main content Accessibility help
×
×
Home

Quantitative characterization of five cover crop species

  • J. RAMIREZ-GARCIA (a1), J. L. GABRIEL (a1), M. ALONSO-AYUSO (a1) and M. QUEMADA (a1)
Summary

The introduction of cover crops in the intercrop period may provide a broad range of ecosystem services derived from the multiple functions they can perform, such as erosion control, recycling of nutrients or forage source. However, the achievement of these services in a particular agrosystem is not always required at the same time or to the same degree. Thus, species selection and definition of targeted objectives is critical when growing cover crops. The goal of the current work was to describe the traits that determine the suitability of five species (barley, rye, triticale, mustard and vetch) for cover cropping. A field trial was established during two seasons (October to April) in Madrid (central Spain). Ground cover and biomass were monitored at regular intervals during each growing season. A Gompertz model characterized ground cover until the decay observed after frosts, while biomass was fitted to Gompertz, logistic and linear-exponential equations. At the end of the experiment, carbon (C), nitrogen (N), and fibre (neutral detergent, acid and lignin) contents, and the N fixed by the legume were determined. The grasses reached the highest ground cover (83–99%) and biomass (1226–1928 g/m2) at the end of the experiment. With the highest C:N ratio (27–39) and dietary fibre (527–600 mg/g) and the lowest residue quality (~680 mg/g), grasses were suitable for erosion control, catch crop and fodder. The vetch presented the lowest N uptake (2·4 and 0·7 g N/m2) due to N fixation (9·8 and 1·6 g N/m2) and low biomass accumulation. The mustard presented high N uptake in the warm year and could act as a catch crop, but low fodder capability in both years. The thermal time before reaching 30% ground cover was a good indicator of early coverage species. Variable quantification allowed finding variability among the species and provided information for further decisions involving cover crop selection and management.

Copyright
Corresponding author
* To whom all correspondence should be addressed. Email: miguel.quemada@upm.es
References
Hide All
Alcántara, C., Sánchez, S., Pujadas, A. & Saavedra, M. (2009). Brassica species as winter cover crops in sustainable agricultural systems in southern Spain. Journal of Sustainable Agriculture 33, 619635.
Bodner, G., Himmelbauer, M., Loiskandl, W. & Kaul, H.-P. (2010). Improved evaluation of cover crop species by growth and root factors. Agronomy for Sustainable Development 30, 455464.
Bowman, G., Shirley, C. & Cramer, C. (2000). Benefits of cover crops. In Managing Cover Crops Profitably (Ed. Clark, A.), pp. 911. Beltsville, USA: Sustainable Agriculture Network.
Chaves, B., De Neve, S., Hofman, G., Boeckx, P. & Van Cleemput, O. (2004). Nitrogen mineralization of vegetable root residues and green manures as related to their (bio)chemical composition. European Journal of Agronomy 21, 161170.
Chirino, E., Bonet, A., Bellot, J. & Sánchez, J. (2006). Effects of 30-year-old Aleppo pine plantations on runoff, soil erosion, and plant diversity in a semi-arid landscape in south eastern Spain. Catena (Giessen) 65, 1929.
Den Hollander, N. G., Bastiaans, L. & Kropff, M. J. (2007). Clover as a cover crop for weed suppression in an intercropping design: I. Characteristics of several clover species. European Journal of Agronomy 26, 92103.
Díaz, S., Lavorel, S., de Bello, F., Quétier, F., Grigulis, K. & Robson, T. M. (2007). Incorporating plant functional diversity effects in ecosystem service assessments. Proceedings of the National Academy of Sciences of the United States of America 104, 2068420689.
Foley, M. E. (1999). Genetic approach to the development of cover crops for weed management. Journal of Crop Production 2, 7793.
Francis, C. F. & Thornes, J. B. (1990). Runoff hydrographs from three Mediterranean vegetation cover types. In Vegetation and Erosion: Processes and Environments (Ed. Thornes, J. B.), pp. 363384. Chichester, UK: John Wiley.
Gabriel, J. L. & Quemada, M. (2011). Replacing bare fallow with cover crops in a maize cropping system: yield, N uptake and fertiliser fate. European Journal of Agronomy 34, 133143.
Gabriel, J. L., Almendros, P., Hontoria, C. & Quemada, M. (2012). The role of cover crops in irrigated systems: soil salinity and salt leaching. Agriculture, Ecosystems and Environment 158, 200207.
Gallejones, P., Castellón, A., del Prado, A., Unamunzaga, O. & Aizpurua, A. (2012). Nitrogen and sulphur fertilization effect on leaching losses, nutrient balance and plant quality in a wheat–rapeseed rotation under a humid Mediterranean climate. Nutrient Cycling in Agroecosystems 93, 337355.
Gan, Y. T., Liang, B. C., Liu, L. P., Wang, X. Y. & McDonald, C. L. (2011). C:N ratios and carbon distribution profile across rooting zones in oilseed and pulse crops. Crop and Pasture Science 62, 496503.
Goering, H. K. & Van Soest, P. J. (1970). Forage Fiber Analyses (Apparatus, Reagents, Procedures, and Some Applications). ARS/USDA Handbook No. 379. Washington, DC: Superintendent of Documents, US Government Printing Office.
Hartwig, N. L. & Ammon, H. U. (2002). Cover crops and living mulches. Weed Science 50, 688699.
Kuo, S., Sainju, U. M. & Jellum, E. J. (1997). Winter cover crop effects on soil organic carbon and carbohydrate in soil. Soil Science Society of America Journal 61, 145152.
Lancashire, P. D., Bleiholder, H., Van den Boom, T., Langelüddeke, P., Stauss, R., Weber, E. & Witzenberger, A. (1991). A uniform decimal code for growth stages of crops and weeds. Annals of Applied Biology 119, 561601.
Langdale, G. W., Blevins, R. L., Karlen, D. L., McCool, D. K., Nearing, M. A., Skidmore, E. L., Thomas, A. W., Tyler, D. D. & Williams, J. R. (1991). Cover crop effects on soil erosion by wind and water. In Cover Crops for Clean Water (Ed. Hargrove, W. L.), pp. 1522. Ankeny, IA, USA: Soil and Water Conservation Society.
Liu, H., Jiang, G. M., Zhuang, H. Y. & Wang, K. J. (2008). Distribution, utilization structure and potential of biomass resources in rural China: with special references of crop residues. Renewable and Sustainable Energy Reviews 12, 14021418.
Mojtahedi, H., Santo, G. S., Hang, A. N. & Wilson, J. H. (1991). Suppression of root-knot nematode populations with selected rapeseed cultivars as green manure. Journal of Nematology 23, 170174.
Pegelow, E. J., Taylor, B. B., Horrocks, R. D., Buxton, D. R., Marx, D. B. & Wanjura, D. F. (1977). The Gompertz function as a model for cotton hypocotyl elongation. Agronomy Journal 69, 875878.
Peoples, M. B., Herridge, D. F. & Ladha, J. K. (1995). Biological nitrogen fixation: an efficient source of nitrogen for sustainable agricultural production? Plant and Soil 174, 328.
Qiu, X., Eastridge, M. L. & Wang, Z. (2003). Effects of corn silage hybrid and dietary concentration of forage NDF on digestibility and performance by dairy cows. Journal of Dairy Science 86, 36673674.
Quemada, M. (2004). Predicting crop residue decomposition using moisture adjusted time scales. Nutrient Cycling in Agroecosystems 70, 283291.
Quemada, M. & Cabrera, M. L. (1995). Carbon and nitrogen mineralized from leaves and stems of four cover crops. Soil Science Society of America Journal 59, 471477.
Quemada, M. & Cabrera, M. L. (2002). Characteristic moisture curves and maximum water content of two crop residues. Plant and Soil 238, 295299.
Quemada, M., Cabrera, M. L. & McCracken, D. V. (1997). Nitrogen release from surface-applied cover crop residues: evaluating the CERES-N submodel. Agronomy Journal 89, 723729.
Quinton, J. N., Edwards, G. M. & Morgan, R. P. C. (1997). The influence of vegetation species and plant properties on runoff and soil erosion: results from a rainfall simulation study in south east Spain. Soil Use and Management 13, 143148.
Ramirez-Garcia, J., Almendros, P. & Quemada, M. (2012). Ground cover and leaf area index relationship in a grass, legume and crucifer crop. Plant, Soil and Environment 58, 385390.
Reeves, D. W. (1994). Cover crops and rotations. In Advances in Soil Science: Crops Residue Management (Eds Hatfield, J. L. & Stewart, B. A.), pp. 125172. Boca Raton, USA: Lewis Publishers.
Schomberg, H. H., Steiner, J. L. & Unger, P. W. (1994). Decomposition and nitrogen dynamics of crop residues: residue quality and water effects. Soil Science Society of America Journal 58, 372381.
Thorup-Kristensen, K. (2001). Are differences in root growth of nitrogen catch crops important for their ability to reduce soil nitrate-N content, and how can this be measured? Plant and Soil 230, 185195.
Thorup-Kristensen, K., Magid, J. & Jensen, L. S. (2003). Catch crops and green manures as biological tools in nitrogen management in temperate zones. Advances in Agronomy 79, 227302.
Tosti, G., Benincasa, P., Farneselli, M., Pace, R., Tei, F., Guiducci, M. & Thorup-Kristiensen, K. (2012). Effects of pure and mixed barley – hairy vetch winter cover crops on maize and processing tomato N nutrition. European Journal of Agronomy 43, 136146.
Unger, P. W. & Vigil, M. F. (1998). Cover crop effects on soil water relationships. Journal of Soil and Water Conservation 53, 200207.
Vos, J. & van der Putten, P. E. L. (2004). Nutrient cycling in a cropping system with potato, spring wheat, sugar beet, oats and nitrogen catch crops. II. Effect of catch crops on nitrate leaching in autumn and winter. Nutrient Cycling in Agroecosystems 70, 2331.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

The Journal of Agricultural Science
  • ISSN: 0021-8596
  • EISSN: 1469-5146
  • URL: /core/journals/journal-of-agricultural-science
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed