Skip to main content Accessibility help
×
Home

Regional climate change impacts on agricultural crop production in Central and Eastern Europe – hotspots, regional differences and common trends

  • J. EITZINGER (a1) (a2), M. TRNKA (a2) (a3), D. SEMERÁDOVÁ (a2), S. THALER (a1), E. SVOBODOVÁ (a2) (a3), P. HLAVINKA (a3), B. ŠIŠKA (a4), J. TAKÁČ (a5), L. MALATINSKÁ (a4), M. NOVÁKOVÁ (a5), M. DUBROVSKÝ (a2) (a6) and Z. ŽALUD (a2) (a3)...

Summary

The present study investigates regional climate change impacts on agricultural crop production in Central and Eastern Europe, including local case studies with different focuses in Austria, the Czech Republic and Slovakia. The area studied experiences a continental European climate and is characterized by strong climatic gradients, which may foster regional differences or trends in the impacts of climate change on agriculture. To study the regional aspects and variabilities of climate change impacts on agriculture, the effect of climate change on selected future agroclimatic conditions, crop yield and variability (including the effect of higher ambient CO2 concentrations) and the most important yield limiting factors, such as water availability, nitrogen balance and the infestation risks posed by selected pests were studied. In general, the results predicted significant agroclimatic changes over the entire area during the 21st century, affecting agricultural crop production through various pathways. Simulated crop yield trends confirmed past regional studies but also revealed that yield-limiting factors may change from region to region. For example, pest pressures, as demonstrated by examining two pests, are likely to increase due to warmer conditions. In general, higher potentials for cereal yield increase are seen for wetter and cooler regions (i.e. uplands) than for the drier and warmer lowlands, where yield potentials will be increasingly limited by decreasing crop water availability and heat under most scenarios. In addition, yield variability will increase during the coming decades, but this may decrease towards the end of the 21st century. The present study contributes to the interpretation of previously conducted climate change impact and adaptation studies for agriculture and may prove useful in proposing future research in this field.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Regional climate change impacts on agricultural crop production in Central and Eastern Europe – hotspots, regional differences and common trends
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Regional climate change impacts on agricultural crop production in Central and Eastern Europe – hotspots, regional differences and common trends
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Regional climate change impacts on agricultural crop production in Central and Eastern Europe – hotspots, regional differences and common trends
      Available formats
      ×

Copyright

Corresponding author

*To whom all correspondence should be addressed. Email: josef.eitzinger@boku.ac.at

References

Hide All
Abrahamsen, P. & Hansen, S. (2000). Daisy: an open soil–crop–atmosphere system model. Environmental Modelling and Software 15, 313330.
Alexandrov, V., Eitzinger, J., Cajic, V. & Oberforster, M. (2002). Potential impact of climate change on selected agricultural crops in north-eastern Austria. Global Change Biology 8, 372389.
ARGONNE NATIONAL LABORATORY (ANL) (1994). Guidance for Vulnerability and Adaptation Assessments. Illinois, USA: USCSP.
Arora, R. & Rowland, L. J. (2011). Physiological research on winter-hardiness: deacclimation resistance, reacclimation ability, photoprotection strategies, and a cold acclimation protocol design. Hortscience 46, 10701078.
Audsley, E., Pearn, K. R., Simota, C., Cojocaru, G., Koutsidou, E., Rounsevell, M. D. A., Trnka, M. & Alexandrov, V. (2006). What can scenario modelling tell us about future European scale land use, and what not? Environmental Science and Policy 9, 148162.
Amthor, J. S. (2001). Effects of atmospheric CO2 concentration on wheat yield: review of results from experiments using various approaches to control CO2 concentration. Field Crops Research 73, 134.
BFW – Bundesforschungs- und Ausbildungszentrum für Wald, Naturgefahren und Landschaft (2007). Digitale Bodenkarte von Österreich. Vienna: BFW.
Connor, D. J. (2004). Designing cropping systems for efficient use of limited water in southern Australia. European Journal of Agronomy 21, 419431.
Cooper, G., Mcgechan, M. B. & Vinten, A. J. A. (1997). The influence of a changed climate on soil workability and available workdays in Scotland. Journal of Agriculture Engineering Research 68, 253269.
Dalla Marta, A., Grifoni, D., Mancini, M., Storchi, P., Zipoli, G. & Orlandini, S. (2010). Analysis of the relationships between climate variability and grapevine phenology in the Nobile di Montepulciano wine production area. Journal of Agricultural Science, Cambridge 148, 657666.
Dubrovský, M., Nemešová, I. & Kalvová, J. (2005). Uncertainties in climate change scenarios for the Czech Republic. Climate Research 29, 139156.
EPPO (2009). EPPO Plant Quarantine Data Retrieval System. PQR- version 4.6. Paris, France: EPPO. Available from: www.eppo.org/DATABASES/pqr/pqr.htm (verified 14 October 2009).
European Environmental Agency (EEA) (2005). Vulnerability and adaptation to climate change in Europe. EEA Technical Report No. 7. Copenhagen: EEA.
European Environmental Agency (EEA) (2007). Climate change: the cost of inaction and the cost of adaptation. EEA Technical Report No. 13. Copenhagen: EEA.
Eitzinger, J., Stastná, M., Zalud, Z. & Dubrovský, M. (2003). A simulation study of the effect of soil water balance and water stress on winter wheat production under different climate change scenarios. Agricultural Water Management 61, 195217.
Eitzinger, J., Trnka, M., Hösch, J., Žalud, Z. & Dubrovský, M. (2004). Comparison of CERES, WOFOST and SWAP models in simulating soil water content during growing season under different soil conditions. Ecological Modelling 171, 223246.
Eitzinger, J., Utset, A. & Alexandrov, V. (2007). Methods for assessing climate change impacts and adaptation measures in agriculture – the ADAGIO project. Georgikon for Agriculture 15, 19.
Eitzinger, J., Formayer, H., Thaler, S., Trnka, M., Zdenek, Z. & Alexandrov, V. (2008). Results and uncertainties of climate change impact research in agricultural crop production in Central Europe. Bodenkultur 59, 131147.
Farda, A., Štepánek, P., Halenka, T., Skalák, P. & Belda, M. (2007). Model ALADIN in climate mode forced with ERA-40 reanalysis (coarse resolution experiment). Meteorological Journal 10, 123130.
Fuhrer, J. (2003). Agroecosystem responses to combinations of elevated CO2, ozone and global climate change. Agriculture, Ecosystems and Environment 97, 120.
Hakala, K., Jauhiainen, L., Himanen, S. J., Rötter, R., Salo, T. & Kahiluoto, H. (2012). Sensitivity of barley varieties to weather in Finland. Journal of Agricultural Science, Cambridge 150, 145160.
Hansen, S. (2000). DAISY, a Flexible Soil – Plant – Atmosphere System Model. Equation Section 1. Copenhagen: The Royal Veterinary and Agricultural University.
Hansen, S., Jensen, H. E., Nielsen, N. E. & Svendsen, H. (1990). DAISY – A Soil Plant System Model. Danish Simulation Model for Transformation and Transport of Energy and Matter in the Soil-Plant-Atmosphere System. Copenhagen: National Agency for Environmental Protection.
Hansen, S., Jensen, H. E., Nielsen, N. E. & Svendsen, H. (1991). Simulation of nitrogen dynamics and biomass production in winter wheat using the Danish simulation model DAISY. Fertilizer Research 27, 245259.
Hlavinka, P., Trnka, M., Semerádová, D., Dubrovský, M., Zalud, Z. & Mozny, M. (2009). Effect of drought on yield variability of key crops in Czech Republic. Agricultural and Forest Meteorology 149, 431442.
Hoddle, M. S. (2004). The potential adventive geographic range of glassy-winged sharpshooter, Homalodisca coagulata and the grape pathogen Xylella fastidiosa: implications for California and other grape growing regions of the world. Crop Protection 23, 691699.
Hoogenboom, G., Jones, J. W., Wilkens, P. W., Batchelor, W. D., Bowen, W. T., Hunt, L. A., Pickering, N. B., Singh, U., Godwin, D. C., Bear, B., Boote, K. J., Ritchie, J. T. & White, J. W. (1994). Crop models, DSSAT Version 3.0. International Benchmark sites Network for Agrotechnology Transfer. Honolulu, USA: University of Hawaii.
Hsiao, T. C., Steduto, P. & Fereres, E. (2007). A systematic and quantitative approach to improve water use efficiency in agriculture. Irrigation Science 25, 209231.
Huglin, P. (1978). Nouveau mode d'évaluation des possibilités héliothermique d'un milieu viticole. Comptes Rendus Académie d'Agriculture 1978, 11171126.
Hulme, M., Wigley, T. M. L., Barrow, E. M., Raper, S. C. B., Centella, A., Smith, S. & Chipanshi, A. C. (2000). Using a Climate Scenario Generator for Vulnerability and Adaptation Assessments: MAGICC and SCENGEN Version 2.4 Workbook. Norwich, UK: Climatic Research Unit.
Iqbal, M. A., Eitzinger, J., Formayer, H., Hassan, A. & Heng, L. K. (2011). A simulation study for assessing yield optimization and potential for water reduction for summer-sown maize under different climate change scenarios. Journal of Agricultural Science, Cambridge 149, 129143.
IPCC (2011). Summary for policymakers. In Intergovernmental Panel on Climate Change Special Report on Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation (Eds Field, C. B., Barros, V., Stocker, T. F., Qin, D., Dokken, D. J., Ebi, K. L., Mastrandrea, M. D., Mach, K. J., Plattner, G.-K., Allen, S. K., Tignor, M. & Midgley, P. M.), pp. 324. Cambridge, UK: Cambridge University Press.
Keszthelyi, S. & Lengyel, Z. (2003). Flight of the ECB (Ostrinia nubilalis Hbn.) as followed by light and pheromone traps in Várdaadn balatonmagyaród 2002. Journal of Central European Agriculture 4, 5564.
Klik, A. & Eitzinger, J. (2010). Impact of climate change on soil erosion and the efficiency of soil conservation practices in Austria. Journal of Agricultural Science, Cambridge 148, 529541.
Kocmánková, E., Trnka, M., Zalud, Z., Semeradova, D., Dubrovsky, M., Muska, F. & Mozny, M. (2008). The comparison of mapping methods of European corn borer (Ostrinia nubilalis) potential distribution. Plant Protection Science 44, 4956.
Kruijt, B., Witte, J. P. M., Jacobs, C. M. J. & Kroon, T. (2008). Effects of rising atmospheric CO2 on evapotranspiration and soil moisture: a practical approach for the Netherlands. Journal of Hydrology 349, 257267.
Latiri-Souki, A. K., Nortcliff, S. & Lawlor, D. W. (1998). Nitrogen fertilizer can increase dry matter, grain production and radiation and water use efficiencies for durum wheat under semi-arid conditions. European Journal of Agronomy 9, 2134.
Lopez, P., Schmith, T. & Kaas, E. (2000). Sensitivity of the Northern Hemisphere circulation to North Atlantic SSTs in the ARPEGE climate AGCM. Climate Dynamics 16, 535547.
Mason, C. E., Rice, M. E., Calvin, D. D., Van Duyn, J. W., Showers, W. B., Hutchinson, W. D., Witkowski, J. F., Higgins, R. A., Onstad, D. W. & Dively, G. P. (1996). European Corn Borer: Ecology and Management. North Central Region Extension Publication no. 327. Ames, Iowa, USA: Iowa State University.
Murer, E., Wagenhofer, J., Aigner, F. & Pfeffer, M. (2004). Die nutzbare Feldkapazität der mineralischen Böden der landwirtschaftlichen Nutzfläche Österreichs. Schriftenreihe BAW 20, 7278.
Müller, W. (1993). Agroklimatische Kennzeichnung des Marchfelds. Beiheft 3 zu den Jahrbüchern der Zentralanstalt für Meteorologie und Geodynamik. Vienna, Austria: Eigenverlag.
Nendel, C., Kersebaum, K. C., Mirschel, W., Manderscheid, R., Weigel, H. J. & Wenkel, K. O. (2009). Testing different CO2 response algorithms against a FACE crop rotation experiment. NJAS-Wageningen Journal of Life Sciences 57, 1725.
Olesen, J. E. & Bindi, M. (2002). Consequences of climate change for European agricultural productivity, land use and policy. European Journal of Agronomy 16, 239262.
Orlandini, S., Nejedlik, P., Eitzinger, J., Alexandrov, V., Toulios, L., Calanca, P., Trnka, M. & Olesen, J. E. (2008). Impacts of climate change and variability on European agriculture: results of inventory analysis in COST 734 countries. Annals of the New York Academy of Sciences 1146, 338353.
Otter-Nacke, S., Ritchie, J. T., Godwin, D. C. & Singh, U. (1991). A User's Guide to CERES Barley – V2·10. Muscle Shoals, AL, USA: International Fertilizer Development Center Simulation manual, IFDC-SM-3.
Parry, M. & Carter, T. (1998). Climate Impact and Adaptation Assessment. London: Earthscan Publication Ltd.
Patil, R. H., Laegdsmand, M., Olesen, J. E. & Porter, J. R. (2010). Growth and yield response of winter wheat to soil warming and rainfall patterns. Journal of Agricultural Science, Cambridge 148, 553566.
Peltonen-Sainio, P., Jauhiainen, L., Trnka, M., Olesen, J. E., Calanca, P., Eckersten, H., Eitzinger, J., Gobin, A., Kersebaum, K. C., Kozyra, J., Kumar, S., Dalla Marta, A., Micale, F., Schaap, B., Seguin, B., Skjelvag, A. O. & Orlandini, S. (2010). Coincidence of variation in yield and climate in Europe. Agriculture, Ecosystems and Environment 139, 483489.
Petr, J. & HniliČka, F. (2002). Changes in requirements on vernalization of winter wheat varieties in the Czech Republic in 1950–2000. Plant, Soil and Environment (Rostlinná Výroba) 48, 148153.
Porter, J. R. & Gawith, M. (1999). Temperatures and the growth and development of wheat: a review. European Journal of Agronomy 10, 2336.
Porter, J. H., Parry, M. L. & Carter, T. R. (1991). The potential effects of climatic change on agricultural insect pests. Agricultural and Forest Meteorology 57, 221240.
Reidsma, P., Ewert, F., Lansink, A. O. & Leemans, R. (2009). Adaptation to climate change and climate variability in european agriculture: the importance of farm level responses. European Journal of Agronomy 32, 91102.
Rischbeck, P. M. (2007). Der Einfluss von Klimaänderung, Bodenbearbeitung und Saattermin auf den Wasserhaushalt und das Ertragspotential von Getreide im Marchfeld. Dissertation, Uiversität für Bodenkultur, Wien.
Ritchie, J. T. & Otter, S. (1985). Description and performance of CERES-Wheat: a user-oriented wheat yield model. In ARS Wheat Yield Project (Ed. Willis, W. O.), pp. 159175. ARS-38, US Department of Agriculture-Agricultural Research Service, Springfield, VA.
Rötter, R. P., Carter, T. R., Olesen, J. E. & Porter, J. R. (2011). Crop-climate models need an overhaul. Nature Climate Change 1, 175177.
Rounsevell, M. D. A. (1993). A review of soil workability models and their limitations in temperate regions. Soil Use and Management 9, 1521.
Santer, B. D., Wigley, T. M. L., Schlesinger, M. E. & Mitchell, J. F. B. (1990). Developing climate scenarios from equilibrium GCM results. Report No. 47. Hamburg: Max Planck Institut für Meteorologie.
Schultz, H. R., Hoppmann, D. & Hofmann, M. (2005). Der Einfluss Klimatischer Veränderungen auf die Phänologische Entwicklung der Rebe, die Sorteneignung sowie Mostgewicht und Säurestruktur der Trauben. Beitrag zum Integrierteen Klimaschutzprogramm des Landes Hessen (InKlim 2012) des Fachgebiets Weinbau der Forschungsanstalt Geisenheim. Wiesbaden, Germany: Hessisches Landesamt für Umwelt und Geologie. Available from: http://klimawandel.hlug.de/fileadmin/dokumente/klima/inklim/endberichte/weinbau.pdf (Accessed 18 September 2012).
Semenov, M. A. & Porter, J. R. (1995). Climatic variability and the modelling of crop yields. Agricultural and Forest Meteorology 73, 265283.
Semenov, M. A. & Shewry, P. R. (2011). Modelling predicts that heat stress, not drought, will increase vulnerability of wheat in Europe. Scientific Reports 1, 66. doi:10.1038/srep00066.
Strauss, F., Schmid, E., Moltchanova, E., Formayer, H. & Wang, X. (2012). Modeling climate change and biophysical impacts of crop production in the Austrian Marchfeld region. Climatic Change 111, 641664.
Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K. B., Tignor, M. & Miller, H. L. (2007). Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, UK: Cambridge University Press.
Sutherst, R. W. & Maywald, G. F. (1985). A computerised system for matching climates in ecology. Agriculture, Ecosystems and Environment 13, 281299.
Sutherst, R. W., Maywald, G. F., Bottomley, W. & Bourne, A. (2001). CLIMEX v2 User's Guide. CSIRO Entomology 12–13, 281–99.
Takáč, J. & Šiška, B. (2011). Calibration and Validation of DAISY Model In Conditions of the Slovak Republic (in Slovak with English abstract). Proceedings of Soil Science and Conservation Research Institute 33, 161172. Available from: http://www.vupop.sk/dokumenty/vedecke_prace_2011.pdf (Accessed 10 July 2012).
Tennakoon, S. B. & Hulugalle, N. R. (2006). Impact of crop rotation and minimum tillage on water use efficiency of irrigated cotton in a Vertisol. Irrigation Science 25, 4552.
Thaler, S., Eitzinger, J., Trnka, M. & Dubrovsky, M. (2012). Impacts of climate change and alternative adaptation options on winter wheat yield and water productivity in a dry climate in Central Europe. The Journal of Agricultural Science 150, 537555.
Tomášek, J. (2007). Soils of the Czech Republic. Prague: Czech Geological Service.
Trnka, M., Dubrovský, M., Semerádová, D. & Žalud, Z. (2004 a). Projections of uncertainties in climate change scenarios into expected winter wheat yields. Theoretical and Applied Climatology 77, 229249.
Trnka, M., Dubrovský, M., & Žalud, Z. (2004 b). Climate change impacts and adaptation strategies in spring barley production in the Czech Republic. Climatic Change 64, 227255.
Trnka, M., Eitzinger, J., Hlavinka, P., Dubrovský, M., Semeradova, D., Stepanek, P., Thaler, S., Zalud, Z., Mozny, M. & Formayer, H. (2009). Climate-driven changes of production regions in Central Europe. Plant, Soil and Environment 55, 257266.
Trnka, M., Kocmánková, E., Balek, J., Eitzinger, J., Ruget, F., Formayer, H., Hlavinka, P., Schaumberger, A., Horáková, V., Možný, M. & Zalud, Z. (2010 a). Simple snow cover model for agrometeorological applications. Agricultural and Forest Meteorology 150, 11151127.
Trnka, M., Eitzinger, J., Dubrovský, M., Semerádová, D., Štěpánek, P., Hlavinka, P., Balek, J., Skalák, P., Farda, A., Formayer, H. & Žalud, Z. (2010 b). Is rainfed crop production in central Europe at risk? Using a regional climate model to produce high resolution agroclimatic information for decision makers. Journal of Agricultural Science, Cambridge 148, 639656.
Trnka, M., Eitzinger, J., Semeradova, D., Hlavinka, P., Balek, J., Dubrovsky, M., Kubu, G., Stepanek, P., Thaler, S., Mozny, M. & Zalud, Z. (2011 a). Expected changes in agroclimatic conditions in Central Europe. Climatic Change 108, 261289.
Trnka, M., Olesen, J. E., Kersebaum, K. C., Skjelvag, A. O., Eitzinger, J., Seguin, B., Peltonen-Sainio, P., Rötter, R., Iglesias, A., Orlandini, S., Dubrovsky, M., Hlavinka, P., Balek, J., Eckersten, H., Cloppet, E., Calanca, P., Gobin, A.,Vucetic, V., Nejedlik, P., Kumar, S., Lalic, B., Mestre, A., Rossi, F., Kozyra, J., Alexandrov, V., Semeradova, D. & Zalud, Z. (2011 b). Agroclimatic conditions in Europe under climate change. Global Change Biology 17, 22982318.
Tsuji, G. Y., Uehara, G. & Balas, S. (1994). DSSAT v3. Honolulu, Hawaii, USA: University of Hawaii.
Tsuji, G. Y., Hoogenboom, G. & Thorton, P. K. (1998). Understanding Options for Agricultural Production. Kluwer Academic, Dodrecht, The Netherlands.
Tubiello, F. N. & Ewert, F. (2002). Simulating the effects of elevated CO2 on crops: approaches and applications for climate change. European Journal of Agronomy 18, 5774.
Tubiello, F. N., Rosenzweig, C., Kimball, B. A., Pinter, P. J., Wall, G. W., Husanker, D. J., Lamorte, R. L. & Garcia, R. L. (1999). Testing CERES-Wheat with free-air carbon dioxide enrichment (FACE) experiment data: CO2 and water interactions. Agronomy Journal 91, 247255.
VučetiĆ, V. (2011). Modelling of maize production in Croatia: present and future climate. Journal of Agricultural Science, Cambridge 149, 145157.
White, J. W., Hoogenboom, G., Kimball, B. A. & Wall, G. W. (2011). Methodologies for simulating impacts of climate change on crop production. Field Crops Research 124, 357368.
Wolf, J., Van Oijen, M. & Kempenaar, C. (2002). Analysis of the experimental variability in wheat responses to elevated CO2 and temperature. Agriculture, Ecosystems and Environment 93, 227247.
Žalud, Z. & Dubrovský, M. (2002). Modelling climate change impacts on maize growth and development in the Czech Republic. Theoretical and Applied Climatology 72(1–2), 85102.
Zhang, B., Li, F. M., Huang, G., Cheng, Z. Y. & Zhang, Y. (2006). Yield performance of spring wheat improved by regulated deficit irrigation in an arid area. Agricultural Water Management 79, 2842.

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed