Skip to main content Accessibility help
×
×
Home

The soybean yield gap in Brazil – magnitude, causes and possible solutions for sustainable production

  • P. C. SENTELHAS (a1), R. BATTISTI (a1), G. M. S. CÂMARA (a2), J. R. B. FARIAS (a3), A. C. HAMPF (a4) and C. NENDEL (a4)...
Summary

Brazil is one of the most important soybean producers in the world. Soybean is a very important crop for the country as it is used for several purposes, from food to biodiesel production. The levels of soybean yield in the different growing regions of the country vary substantially, which results in yield gaps of considerable magnitude. The present study aimed to investigate the soybean yield gaps in Brazil, their magnitude and causes, as well as possible solutions for a more sustainable production. The concepts of yield gaps were reviewed and their values for the soybean crop determined in 15 locations across Brazil. Yield gaps were determined using potential and attainable yields, estimated by a crop simulation model for the main maturity groups of each region, as well as the average actual famers’ yield, obtained from national surveys provided by the Brazilian Government for a period of 32 years (1980–2011). The results showed that the main part of the yield gap was caused by water deficit, followed by sub-optimal crop management. The highest yield gaps caused by water deficit were observed mainly in the south of Brazil, with gaps higher than 1600 kg/ha, whereas the lowest were observed in Tapurah, Jataí, Santana do Araguaia and Uberaba, between 500 and 1050 kg/ha. The yield gaps caused by crop management were mainly concentrated in South-central Brazil. In the soybean locations in the mid-west, north and north-east regions, the yield gap caused by crop management was <500 kg/ha. When evaluating the integrated effects of water deficit and crop management on soybean yield gaps, special attention should be given to Southern Brazil, which has total yield gaps >2000 kg/ha. For reducing the present soybean yield gaps observed in Brazil, several solutions should be adopted by growers, which can be summarized as irrigation, crop rotation and precision agriculture. Improved dissemination of agricultural knowledge and the use of crop simulation models as a tool for improving crop management could further contribute to reduce the Brazilian soybean yield gap.

Copyright
Corresponding author
* To whom all correspondence should be addressed. Email: pcsentel.esalq@usp.br
References
Hide All
Alberto, C. M., Streck, N. A., Heldwein, A. B., Buriol, G. A. & Medeiros, S. L. P. (2006). Soil water and wheat, soybean, and maize yields associated to El Niño Southern Oscilation. Pesquisa Agropecuária Brasileira 41, 10671075. (in Portuguese).
Alexandratos, N. & Bruinsma, J. (2012). World Agriculture Towards 2030/2050: The 2012 Revision. ESA Working Paper no. 12–03. Rome: FAO Agricultural Development Studies Team. Available from: http://www.fao.org/docrep/016/ap106e/ap106e.pdf (accessed February 2015).
Alvares, C. A., Stape, J. L., Sentelhas, P. C., de Moraes Gonçalves, J. L. M. & Sparovek, G. (2013). Köppen's climate classification map for Brazil. Meteorologische Zeitschirift 22, 711728.
Andrioli, K. & Sentelhas, P. C. (2009). Brazilian maize genotypes sensitivity to water deficit estimated through a simple crop yield model. Pesquisa Agropecuária Brasileira 44, 653660.
Battisti, R., Sentelhas, P. C. & Pilau, F. G. (2012). Agricultural efficiency of soybean, corn and wheat production in the state of Rio Grande do Sul, Brazil, between 1980 and 2008. Ciencia Rural 42, 2430. (in Portuguese).
Battisti, R. & Sentelhas, P. C. (2015). Drought tolerance of Brazilian soybean cultivars simulated by a simple agrometeorological yield model. Experimental Agriculture 51, 285298.
Berlato, M. A., Farenzena, H. & Fontana, D. C. (2005). Association between El Nino Southern Oscillation and corn yield in Rio Grande do Sul State. Pesquisa Agropecuaria Brasileira 40, 423432. (in Portuguese).
Bhatia, V. S., Singh, P., Wani, S. P., Chauhan, G. S., Kesava Rao, A. V. R., Mishra, A. K. & Srinivas, K. (2008). Analysis of potential yields and yield gaps of rainfed soybean in India using CROPGRO-Soybean model. Agricultural and Forest Meteorology 148, 12521265.
Cassman, K. G. (1999). Ecological intensification of cereal production systems: yield potential, soil quality, and precision agriculture. Proceedings of the National Academy of Sciences USA 96, 59525959.
Del Ponte, E. M., Godoy, C. V., Li, X. & Yang, X. B. (2006). Predicting severity of Asian soybean rust epidemics with empirical rainfall models. Phytopathology 96, 797803.
Del Ponte, E. M., Maia, A. H. N., dos Santos, T. V., Martins, E. J. & Baethgen, W. E. (2011). Early-season warning of soybean rust regional epidemics using El Niño Southern/Oscillation information. International Journal of Biometeorology 55, 575583.
Destro, D., Carpentieri-Pípolo, V., de Kiihl, R. A. S. & de Almeida, L. A. (2001). Photoperiodism and genetic control of the long juvenile period in soybean: a review. Crop Breeding and Applied Biotechnology 1, 7292.
Doorenbos, J. & Kassam, A. M. (1979). Yield Response to Water. Irrigation and Drainage Paper 33. Rome: FAO.
FAO (2009). Global Agriculture Towards 2050. High Level Expert Forum – How to Feed the World in 2050. Rome: FAO.
FAO (2013). FAOSTAT 2013: FAO Statistical Databases. Rome: FAO. Available from: http://faostat.fao.org/site/567/DesktopDefault.aspx?PageID=567#ancor (accessed February 2015).
FAO (2014). FAOSTAT: Inputs: Population: Annual Time Series: Population Estimation and Projection. Rome: FAO. Available from: http://faostat.fao.org/site/550/DesktopDefault.aspx?PageID=550”\l“ancor (accessed February 2015).
Farias, J. R. B., Assad, E. D., de Almeida, I. R., Evangelista, B. A., Lazzarotto, C., Neumaier, N. & Nepomuceno, A. L. (2001). Characterization of the water deficit risk for soybean in Brazil. Revista Brasileira de Agrometeorologia 9, 415421. (in Portuguese).
Franchini, J. C., Crispino, C. C., Souza, R. A., Torres, E. & Hungria, M. (2007). Microbiological parameters as indicators of soil quality under various soil management and crop rotation systems in southern Brazil. Soil and Tillage Research 92, 1829.
Franchini, J. C., Debiasi, H., Sacoman, A., Nepomuceno, A. L. & Farias, J. R. B. (2009). Soil Management to Reduce Yield Gap by Drought. Documentos 314. Londrina: Embrapa Soja. (in Portuguese).
Franchini, J. C., Costa, J. M., Debiasi, H. & Torres, E. (2011). The Importance of Crop Rotation for Sustainable Agricultural Production in Paraná. Documentos 327. Londrina: Embrapa Soja. (in Portuguese).
Gilbert, M. E., Holbrook, N. M., Zwieniecki, M. A., Sadok, W. & Sinclair, T. R. (2011). Field confirmation of genetic variation in soybean transpiration response to vapor pressure deficit and photosynthetic compensation. Field Crops Research 124, 8592.
Grassini, P., Thorburn, J., Burr, C. & Cassman, K. (2011). High-yield irrigated maize in the Western U.S. Corn Belt: I. On-farm yield, yield potential, and impact of agronomic practices. Field Crops Research 120, 142150.
Hall, A. J., Feoli, C., Ingaramo, J. & Balzarini, M. (2013). Gaps between farmer and attainable yield across rainfed sunflower growing regions of Argentina. Field Crops Research 143, 119129.
Heinemann, A. B. & Sentelhas, P. C. (2011). Environmental group identification for upland rice production in central Brazil. Scientia Agrícola 68, 540547.
Hoang, V. N. (2013). Analysis of productive performance of crop production systems: an integrated analytical framework. Agricultural Systems 116, 1624.
Hochman, Z., Gobbett, D., Holzworth, D., McClelland, T., van Rees, H., Marinoni, O., Garcia, J. N. & Horan, H. (2012). Quantifying yield gaps in rainfed cropping systems: a case study of wheat in Australia. Field Crops Research 136, 8596.
Hörbe, T. A. N., Amado, T. J. C., Ferreira, A. O. & Alba, P. J. (2013). Optimization of corn plant population according to management zones in Southern Brazil. Precision Agriculture 14, 450465.
Hungria, M., Franchini, J. C., Brandão-Junior, O., Kaschuk, G. & Souza, R. A. (2009). Soil microbial activity and crop sustainability in a long-term experiment with three soil-tillage and two crop-rotation systems. Applied Soil Ecology 42, 288296.
IBGE (2009). Census of Agriculture 2006. Grandes Regiões e Unidades da Federação. Brasília: Instituto Brasileiro de Geografia e Estatística. (in Portuguese).
IBGE (2012). Interactive Maps: Soils. Brasília: Instituto Brasileiro de Geografia e Estatística. Available from: http://mapas.ibge.gov.br (accessed February 2015). (in Portuguese).
IBGE (2013). Agricultural Production. Instituto Brasileiro de Geografia e Estatística. Available from: http://www.sidra.ibge.gov.br/bda/pesquisas/pam/default.asp?o=18&i=P (accessed February 2015). (in Portuguese).
IICA (Instituto Interamericano de Cooperação para a Agricultura) (2008). Irrigation in Brazil: Situation and Perspectives (A Irrigacao no Brasil: Situacao e Diretrizes). Brasilia: Ministério de Integração Nacional. (in Portuguese).
IPCC (2013). Summary for policymakers. In Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (Eds Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V. & Midgley, P. M.), pp. 329. Cambridge, UK: Cambridge University Press.
Kassam, A. H. (1977). Net Biomass Production and Yield of Crops. Rome: FAO.
Kuss, R. C. R., Köing, O., Dutra, L. M. C., Bellé, R. A., Roggia, S. & Sturmer, G. R. (2008). Plant population and irrigation management strategies in soybean tillage. Ciência Rural 38, 11331137. (in Portuguese).
Liang, W-L., Carberry, P., Wang, G-Y., Lu, R-H., Lu, H-Z. & Xia, A-P. (2011). Quantifying the yield gap in wheat-maize cropping systems of the Hebei Plain, China. Field Crops Research 124, 180185.
Lobell, D. B., Cassman, K. G. & Field, C. B. (2009). Crop yield gaps: their importance, magnitudes, and causes. Annual Review of Environment and Resources 34, 179204.
Lopes, A. S. & Guilherme, L. A. G. (1994). Soils in the Cerrado – Managing the Fertility for Agricultural Production. Technical Bulletin no. 5, 2nd edn. São Paulos: ANDA. (in Portuguese).
Lopes-Assad, M. L., Sans, L. M. A., Assad, E. D. & Zullo, J. Jr. (2001). Relationship between water holding capacity and sand contente in Brazilian soils. Revista Brasileira de Agrometeorologia 9, 588596. (in Portuguese).
MAPA - Ministry of Agriculture, Livestock and Food Supply (2012). Climate Risk Zoning. Available from: http://www.agricultura.gov.br/politica-agricola/zoneamento-agricola/portarias-segmentadas-por-uf (accessed February 2015). (In Portuguese).
Matsuo, E., Sediyama, T., Oliveira, R. D. L., Cruz, C. D. & Oliveira, R. C. T. (2012). Characterization of type and genetic diversity among soybean cyst nematode differentiators. Scientia Agricola 69, 147151.
Monteiro, L. A. & Sentelhas, P. C. (2014). Potential and actual sugarcane yield in Southern Brazil as a function of climate conditions and crop management. Sugar Technology 16, 264276.
Phillips, R. E., Thomas, G. W., Blevins, R. L., Frye, W. W. & Phillips, S. H. (1980). No-tillage agriculture. Science 208, 11081113.
Priestley, C. H. B. & Taylor, R. J. (1972). On the assessment of surface heart flux and evaporation using large-scale parameters. Monthly Weather Review 100, 8192.
Pro-Seeds Foundation (2013). Cultivar Trials Experiments: Soybean. Passo Fundo, Brazil: Pro-Seeds Foundation. Available from: http://fundacaoprosementes.com/?menu=ensaiodecultivares&submenu=soja#id (accessed January 2013). (in Portuguese).
Rabbinge, R. (1993). The ecological background of food production. In Crop Protection and Sustainable Agriculture (Eds Chadwick, D. J. & Marsh, J.), pp. 229. Ciba Foundation Symposium 177. Chichester, UK: John Wiley.
Rao, N. H., Sarma, P. B. S. & Chander, S. (1988). A simple dated water-production function for use in irrigated agriculture. Agricultural Water Management 13, 2532.
Reichert, J. M., Albuquerque, J. A., Kaiser, D. R., Reinert, D. J., Urach, F. L. & Carlesso, R. (2009). Estimation of water retention and availability in some soils of Rio Grande do Sul state, Brazil. Revista Brasileira de Ciência do Solo 33, 15471560.
Rodrigues, G. C., Martins, J. D., da Silva, F. G., Carlesso, R. & Pereira, L. S. (2013a). Modelling economic impacts of deficit irrigated maize in Brazil with consideration of different rainfall regimes. Biosystems Engineering 116, 97110.
Rodrigues, R. A., Juliatti, F. C., Pedrini, J. E., Fernandes, J. M. C., Justino, F. B., Heinemann, A. B., Fraisse, C. W., Farias, J. R. B., Pavan, W., Costa, L. C., Vale, F. X. R. & Rezende, A. A. (2013b). Asian soybean rust: modeling the impact on soybean grain yield in the Triângulo Mineiro/Alto Paranaíba region, Minas Gerais, Brazil. Bioscience Journal 29, 264279.
Sentelhas, P. C. & Monteiro, J. E. B. A. (2009). Agrometeorology of Crops: information for sustainable agriculture. In Agrometeorologia dos Cultivos: O Fator Meteorológico na Produção Agrícola (Ed. Monteiro, J. E. B. A.), pp. 312. Brasilia: INMET. (in Portuguese).
Sinclair, T. R., Neumaier, N., Farias, J. R. B. & Nepomuceno, A. L. (2005). Comparison of vegetative development in soybean cultivars for low-latitude environments. Field Crops Research 92, 5359.
Sinclair, T. R., Messina, C. D., Beatty, A. & Samples, M. (2010). Assessment across the United States of the benefits of altered soybean drought traits. Agronomy Journal 102, 475482.
Thornthwaite, C. W. & Mather, J. R. (1955). The Water Balance. Publications in Climatology no. 8. New Jersey, USA: Drexel Institute of Technology.
Torrion, J., Setiyono, T. D., Cassman, K., Specht, J. (2011). Soybean phenology simulation in North-Central United States. Agronomy Journal 103, 16611667.
Torrion, J., Setiyono, T. D., Cassman, K., Fergusson, R. B., Irmak, S. & Specht, J. (2012). Soybean root development relative to vegetative and reproductive phenology. Agronomy Journal 104, 17021709.
van Ittersum, M. K. & Rabbinge, R. (1997). Concepts in production ecology for analysis and qualification of agricultural input-output combinations. Field Crops Research 52, 197208.
van Ittersum, M. K., Cassman, K. G., Grassini, P., Wolf, J., Tittonell, P. & Hochman, Z. (2013). Yield gap analysis with local to global relevance – A review. Field Crops Research 143, 417.
Willmott, C. J., Ackleson, S. G., Davis, R. E., Feddema, J. J., Klink, K. M., Legates, D. R., O'Donnell, J. & Rowe, C. M. (1985). Statistics for the evaluation and comparison of models. Journal of Geophysical Research: Oceans 90, 89959005.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

The Journal of Agricultural Science
  • ISSN: 0021-8596
  • EISSN: 1469-5146
  • URL: /core/journals/journal-of-agricultural-science
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed