Published online by Cambridge University Press: 14 July 2016
As a model for an ATM switch we consider the overflow frequency of a queue that is served at a constant rate and in which the arrival process is the superposition of N traffic streams. We consider an asymptotic as N → ∞ in which the service rate Nc and buffer size Nb also increase linearly in N. In this regime, the frequency of buffer overflow is approximately exp(–NI(c, b)), where I(c, b) is given by the solution to an optimization problem posed in terms of time-dependent logarithmic moment generating functions. Experimental results for Gaussian and Markov modulated fluid source models show that this asymptotic provides a better estimate of the frequency of buffer overflow than ones based on large buffer asymptotics.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.