Hostname: page-component-7d684dbfc8-jr2wd Total loading time: 0 Render date: 2023-09-22T07:15:40.092Z Has data issue: false Feature Flags: { "corePageComponentGetUserInfoFromSharedSession": true, "coreDisableEcommerce": false, "coreDisableSocialShare": false, "coreDisableEcommerceForArticlePurchase": false, "coreDisableEcommerceForBookPurchase": false, "coreDisableEcommerceForElementPurchase": false, "coreUseNewShare": true, "useRatesEcommerce": true } hasContentIssue false

Pathwise large deviations for the rough Bergomi model

Published online by Cambridge University Press:  16 January 2019

Antoine Jacquier*
Imperial College London
Mikko S. Pakkanen*
Imperial College London CREATES
Henry Stone*
Imperial College London
* Postal address: Department of Mathematics, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK.
* Postal address: Department of Mathematics, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK.
* Postal address: Department of Mathematics, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK.


Introduced recently in mathematical finance by Bayer et al. (2016), the rough Bergomi model has proved particularly efficient to calibrate option markets. We investigate some of its probabilistic properties, in particular proving a pathwise large deviations principle for a small-noise version of the model. The exponential function (continuous but superlinear) as well as the drift appearing in the volatility process fall beyond the scope of existing results, and a dedicated analysis is needed.

Research Papers
Copyright © Applied Probability Trust 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


[1]Adler, R. J. and Taylor, J. E. (2007). Random Fields and Geometry. Springer, New York.Google Scholar
[2]Aliprantis, C. D. and Border, K. C. (2006). Infinite Dimensional Analysis: A Hitchhiker’s Guide, 3rd edn. Springer, Berlin.Google Scholar
[3]Alòs, E., León, J. A. and Vives, J. (2007). On the short-time behavior of the implied volatility for jump-diffusion models with stochastic volatility. Finance Stoch. 11, 571589.CrossRefGoogle Scholar
[4]Bajgrowicz, P., Scaillet, O. and Treccani, A. (2015). Jumps in high-frequency data: spurious detections, dynamics, and news. Manag. Sci. 62, 21982217.CrossRefGoogle Scholar
[5]Bayer, C., Friz, P. and Gatheral, J. (2016). Pricing under rough volatility. Quant. Finance 16, 887904.CrossRefGoogle Scholar
[6]Bayer, C. et al. (2017). Short-time near-the-money skew in rough fractional volatility models. Preprint. Available at Scholar
[7]Bennedsen, M., Lunds, A. and Pakkanen, M. S. (2016). Decoupling the short- and long-term behavior of stochastic volatility. Preprint. Available at Scholar
[8]Bennedsen, M., Lunds, A. and Pakkanen, M. S. (2017). Hybrid scheme for Brownian semistationary processes. Finance Stoch. 21, 931965.CrossRefGoogle Scholar
[9]Biagini, F., Hu, Y.,Øksendal, B. and Zhang, T. (2008). Stochastic Calculus for Fractional Brownian Motion and Applications. Springer, London.CrossRefGoogle Scholar
[10]Carmona, R. A. and Tehranchi, M. R. (2006). Interest Rate Models: An Infinite Dimensional Stochastic Analysis Perspective. Springer, Berlin.Google Scholar
[11]Cherny, A. (2008). Brownian moving averages have conditional full support. Ann. Appl. Prob. 18, 18251830.CrossRefGoogle Scholar
[12]Christensen, K., Oomen, R. C. A. and Podolskij, M. (2014). Fact or friction: jumps at ultra high frequency. J. Financial Econom. 114, 576599.CrossRefGoogle Scholar
[13]Dembo, A. and Zeitouni, O. (2010). Large Deviations Techniques and Applications. Springer, Berlin.CrossRefGoogle Scholar
[14]Deuschel, J. D., Friz, P. K., Jacquier, A. and Violante, S. (2014). Marginal density expansions for diffusions and stochastic volatility I: theoretical foundations. Commun. Pure Appl. Math. 67, 4082.CrossRefGoogle Scholar
[15]Deuschel, J.-D. and Stroock, D. W. (1989). Large Deviations. Academic Press, Boston.Google Scholar
[16]Fernique, X. (1970). Intégrabilité des vecteurs gaussiens. C. R. Acad. Sci. Paris A-B 270, A1698A1699.Google Scholar
[17]Figueroa-López, J. E. and Forde, M. (2012). The small-maturity smile for exponential Lévy models. SIAM J. Financial Math. 3, 3365.CrossRefGoogle Scholar
[18]Forde, M. and Jacquier, A. (2009). Small-time asymptotics for implied volatility under the Heston model. Int. J. Theoret. Appl. Finance 12, 861876.CrossRefGoogle Scholar
[19]Forde, M. and Zhang, H. (2017). Asymptotics for rough stochastic volatility models. SIAM J. Financial Math. 8, 114145.CrossRefGoogle Scholar
[20]Friz, P. K. et al. (eds) (2015). Large Deviations and Asymptotic Methods in Finance. Springer, Cham.CrossRefGoogle Scholar
[21]Fukasawa, M. (2011). Asymptotic analysis for stochastic volatility: martingale expansion. Finance Stoch. 15, 635654.CrossRefGoogle Scholar
[22]Fukasawa, M. (2017). Short-time at-the-money skew and rough fractional volatility. Quant. Finance 17, 189198.CrossRefGoogle Scholar
[23]Garcia, J. (2008). A large deviation principle for stochastic integrals. J. Theoret. Prob. 21, 476501.CrossRefGoogle Scholar
[24]Gatheral, J., Jaisson, T. and Rosenbaum, M. (2018). Volatility is rough. Quant. Finance 18, 933949.CrossRefGoogle Scholar
[25]Guillin, A. (2003). Averaging principle of SDE with small diffusion: moderate deviations. Ann. Prob. 31, 413443.Google Scholar
[26]Jacquier, A., Keller-Ressel, M. and Mijatović, A. (2013). Large deviations and stochastic volatility with jumps: asymptotic implied volatility for affine models. Stochastics 85, 321345.CrossRefGoogle Scholar
[27]Jacquier, A., Martini, C. and Muguruza, A. (2018). On VIX futures in the rough Bergomi model. Quant. Finance 18, 4561.CrossRefGoogle Scholar
[28]Jacquier, A. and Roome, P. (2015). Asymptotics of forward implied volatility. SIAM J. Financial Math. 6, 307351.CrossRefGoogle Scholar
[29]Jakubowski, A., Mémin, J. and Pagès, G. (1989). Convergence en loi des suites d’intégrales stochastiques sur l’espace D1 de Skorokhod. Prob. Theory Relat. Fields 81, 111137.CrossRefGoogle Scholar
[30]Kallenberg, O. (2002). Foundations of Modern Probability, 2nd edn. Springer, New York.CrossRefGoogle Scholar
[31]Kurtz, T. G. and Protter, P. E. (1996). Weak convergence of stochastic integrals and differential equations. II. Infinite-dimensional case. In Probabilistic Models for Nonlinear Partial Differential Equations (Lecture Notes Math. 1627). Springer, Berlin, pp. 197285.CrossRefGoogle Scholar
[32]Lévy, P. (1953). Random functions: general theory with special reference to Laplacian random functions. Univ. California Publ. Statist. 1, 331390.Google Scholar
[33]Mandelbrot, B. B.and Van Ness, J. W. (1968). Fractional Brownian motions, fractional noises and applications. SIAM Rev. 10, 422437.CrossRefGoogle Scholar
[34]Morse, M. and Spiliopoulos, K. (2018). Importance sampling for slow-fast diffusions based on moderate deviations. Preprint. Available at Scholar
[35]Olver, F. W. J. (1997). Asymptotics and Special Functions. A K Peters/CRC Press, Boca Raton, FL.CrossRefGoogle Scholar
[36]Robertson, S. (2010). Sample path large deviations and optimal importance sampling for stochastic volatility models. Stoch. Process. Appl. 120, 6683.CrossRefGoogle Scholar
[37]Spiliopoulos, K. (2013). Large deviations and importance sampling for systems of slow-fast motion. Appl. Math. Optimization 67, 123161.CrossRefGoogle Scholar
[38]Titchmarsh, E. C. (1926). The zeros of certain integral functions. Proc. London Math. Soc. 25, 283302.CrossRefGoogle Scholar