Skip to main content

Estimation of the upper cutoff parameter for the tapered Pareto distribution

  • Y. Y. Kagan (a1) and F. Schoenberg (a1)

The tapered (or generalized) Pareto distribution, also called the modified Gutenberg-Richter law, has been used to model the sizes of earthquakes. Unfortunately, maximum likelihood estimates of the cutoff parameter are substantially biased. Alternative estimates for the cutoff parameter are presented, and their properties discussed.

Corresponding author
1 Postal address: Department of Earth and Space Sciences, University of California, Los Angeles, CA 90095–1567, USA. Email:
2 Postal address: Department of Statistics, University of California, Los Angeles, CA 90095–1554, USA. Email:
Hide All
[1] Bird, P., Kagan, Y. Y. and Jackson, D. D. (2000). Frequency-magnitude distribution, effective lithosphere thickness, and seismic efficiency of oceanic transforms and spreading ridges (abstract). Eos Trans. AGU 81(22), p. WP147.
[2] Daley, D. J. and Vere-Jones, D. (1988). An Introduction to the Theory of Point Processes. Springer, New York.
[3] David, F. N. and Johnson, N. L. (1951). The effect of non-normality on the power function of the F-test in the analysis of variance. Biometrika 38, 4357.
[4] Dusenberry, W. E. and Bowman, K. O. (1977). The moment estimator for the shape parameter of the Gamma distribution. Comm. Stat. B 1, 119.
[5] Dziewonski, A. M., Ekström, G. and Maternovskaya, N. N. (2000). Centroid-moment tensor solutions for July-September 1999. Phys. Earth Planet. Inter. 119, 311319.
[6] Frohlich, C. and Davis, S. D. (1999). How well constrained are well-constrained T, B, and P axes in moment tensor catalogs? J. Geophys. Res. 104, 49014910.
[7] Jackson, D. D. and Kagan, Y. Y. (1999). Testable earthquake forecasts for 1999. Seismol. Res. Lett. 70, 393403.
[8] Jenkins, G. M. and Watts, D. G. (1968). Spectral Analysis and its Applications. Holden-Day, San Francisco.
[9] Johnson, N. L., Kotz, S. and Balakrishnan, N. (1995). Continuous Univariate Distributions , 2nd edn. Wiley, New York.
[10] Kagan, Y. Y. (1993). Statistics of characteristic earthquakes. Bull. Seismol. Soc. Amer. 83, 724.
[11] Kagan, Y. Y. (1994). Observational evidence for earthquakes as a nonlinear dynamic process. Physica D 77, 160192.
[12] Kagan, Y. Y. (1999). Universality of the seismic moment-frequency relation. Pure Appl. Geophys. 155, 537573.
[13] Kagan, Y. Y. and Knopoff, L. (1984). A stochastic model of earthquake occurrence. Proc. 8th Int. Conf. Earthq. Engrg. , San Francisco, CA, Vol. 1, 295302.
[14] Kagan, Y. Y. and Vere-Jones, D. (1996). Problems in the modelling and statistical analysis of earthquakes. In Athens Conference on Applied Probability and Time Series Analysis (Lecture Notes Statist. 114), eds Heyde, C. C., Prohorov, Yu. V., Pyke, R. and Rachev, S. T., Springer, New York, 398425.
[15] Knopoff, L. and Kagan, Y. Y. (1977). Analysis of the theory of extremes as applied to earthquake problems. J. Geophys. Res. 82, 56475657.
[16] Lay, T. and Wallace, T. C. (1995). Modern Global Seismology. Academic Press, San Diego.
[17] Main, I. G. (1996). Statistical physics, seismogenesis, and seismic hazard. Rev. Geophys. 34, 433462.
[18] Molchan, G. M. and Podgaetskaya, V. M. (1973). Parameters of global seismicity, I. In Computational Seismology 6, ed. Keilis-Borok, V. I., Nauka, Moscow, 4466 (in Russian).
[19] Ogata, Y. and Katsura, K. (1993). Analysis of temporal and spatial heterogeneity of magnitude frequency distribution inferred from earthquake catalogues. Geophys. J. Int. 113, 727738.
[20] Pareto, V. (1897). Cours d'économie Politique , Vol. 2. F. Rouge, Lausanne. (Quoted by Pareto, V. (1964), Œuvres Complètes, Vol. II, Libraire Droz, Genève.)
[21] Pisarenko, V. F. (1991). Statistical evaluation of maximum possible earthquakes. Phys. Solid Earth 27, 757763 (English translation).
[22] Pisarenko, V. F., Lyubushin, A. A., Lysenko, V. B. and Golubeva, T. V. (1996). Statistical estimation of seismic hazard parameters: maximum possible magnitude and related parameters. Bull. Seismol. Soc. Amer. 86, 691700.
[23] Shenton, L. R., Bowman, K. O. and Sheehan, D. (1971). Sampling moments of moments associated with univariate distributions. J. Roy. Statist. Soc. Ser. B 33, 444457.
[24] Sipkin, S. A., Bufe, C. G. and Zirbes, M. D. (2000). Moment-tensor solutions estimated using optimal filter theory: global seismicity, 1998. Phys. Earth Planet. Inter. 118, 169179.
[25] Sornette, D. and Sornette, A. (1999). General theory of the modified Gutenberg-Richter law for large seismic moments. Bull. Seismol. Soc. Amer. 89, 1121–1030.
[26] Utsu, T. (1999). Representation and analysis of the earthquake size distribution: a historical review and some new approaches. Pure Appl. Geophys. 155, 509535.
[27] Vere-Jones, D. (1976). A branching model for crack propagation. Pure Appl. Geophys. 114, 711725.
[28] Vere-Jones, D. (1977). Statistical theories of crack propagation. Math. Geol. 9, 455481.
[29] Vere-Jones, D. (1992). Statistical methods for the description and display of earthquake catalogues. In Statistics in the Environmental and Earth Sciences , eds Walden, A. T. and Guttorp, P., Arnold, London, 220244.
[30] Vere-Jones, D., Robinson, R. and Yang, W. Z. (2001). Remarks on the accelerated moment release model: problems of model formulation simulation and estimation. Geophys. J. Int. 144, 517531.
[31] Wilks, S. S. (1962). Mathematical Statistics. Wiley, New York.
[32] Wyss, M. (1973). Towards a physical understanding of the earthquake frequency distribution. Geophys. J. Roy. Astronom. Soc. 31, 341359.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Applied Probability
  • ISSN: 0021-9002
  • EISSN: 1475-6072
  • URL: /core/journals/journal-of-applied-probability
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


MSC classification


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed