Skip to main content

Extremes of Homogeneous Gaussian Random Fields

  • Krzysztof Dębicki (a1), Enkelejd Hashorva (a2) and Natalia Soja-Kukieła (a3)

Let {X(s, t): s, t ≥ 0} be a centred homogeneous Gaussian field with almost surely continuous sample paths and correlation function r(s, t) = cov(X(s, t), X(0, 0)) such that r(s, t) = 1 - |s|α1 - |t|α2 + o(|s|α1 + |t|α2 ), s, t → 0, with α1, α2 ∈ (0, 2], and r(s, t) < 1 for (s, t) ≠ (0, 0). In this contribution we derive an asymptotic expansion (as u → ∞) of P(sup(sn 1(u),tn 2(u)) ∈[0,x]∙[0,y] X(s, t) ≤ u), where n 1(u)n 2(u) = u 2/α1+2/α2 Ψ(u), which holds uniformly for (x, y) ∈ [A, B]2 with A, B two positive constants and Ψ the survival function of an N(0, 1) random variable. We apply our findings to the analysis of extremes of homogeneous Gaussian fields over more complex parameter sets and a ball of random radius. Additionally, we determine the extremal index of the discretised random field determined by X(s, t).

Corresponding author
Postal address: Mathematical Institute, University of Wrocław, pl. Grunwaldzki 2/4, 50-384 Wrocław, Poland. Email address:
∗∗ Postal address: Faculty of Business and Economics (HEC Lausanne), University of Lausanne, 1015 Lausanne, Switzerland.
∗∗∗ Postal address: Nicolaus Copernicus University, ul. Chopina 12/18, 87-100 Toruń, Poland.
Hide All
[1] Leadbetter, M. R., Lindgren, G. and Rootzén, H. (1983).“Extremes and Related Properties of Random Sequences and Processes. Springer, New York.
[2] Arendarczyk, M. and Debicki, K. (2012). “Exact asymptotics of supremum of a stationary Gaussian process over a random interval.” Statist. Prob. Lett. 82, 645652.
[3] Tan, Z. and Hashorva, E. (2013). “Limit theorems for extremes of strongly dependent cyclo-stationary χ-processes.” Etremes 16, 241254.
[4] Pickands, J. III (1969). “Upcrossing probabilities for stationary Gaussian processes.” Trans. Amer. Math. Soc. 145, 5173.
[5] Piterbarg, V. I. (1972). “On the paper by J. Pickands.” Vestnik Moskov. Univ. Ser. I Mat. Meh. 27, 2530.
[6] Piterbarg, V. I. (1996). “Asymptotic Methods in the Theory of Gaussian Processes and Fields ({ Trans. Math. Monogr.} 148).” American Mathematical Society, Providence, RI.
[7] Bingham, N. H., Goldie, C. M. and Teugels, J. L. (1987). “Regular Variation.” Cambridge University Press.
[8] Embrechts, P., Klüppelberg, C. and Mikosch, T. (1997). “Modelling Extremal Events for Insurance and Finance.” Springer, Berlin.
[9] Jakubowski, A. (1991). “Relative extremal index of two stationary processes.” Stoch. Process. Appl. 37, 281297.
[10] Leadbetter, M. R. (1983). “Extremes and local dependence in stationary sequences.” Z. Wahrscheinlichkeitsch. 65, 291306.
[11] O'Brien, G. L. (1987). “Extreme values for stationary and Markov sequences.” Ann. Prob. 15, 281291.
[12] French, J. P. and Davis, R. A. (2013). “The asymptotic distribution of the maxima of a Gaussian random field on a lattice.” Extremes 16, 126.
[13] Hsing, T. (1993). “Extremal index estimation for a weakly dependent stationary sequence.” Ann. Statist. 21, 20432071.
[14] Jakubowski, A. and Soja-Kukieła, N. (2014). “Managing local dependencies in limit theorems for maxima of stationary random fields.” { Submitted.}.
[15] Ferreira, H. (2006). “The upcrossings index and the extremal index.” J. Appl. Prob. 43, 927937.
[16] Laurini, F. and Tawn, J. A. (2012). “The extremal index for {GARCH(1,1)} processes.” Extremes 15, 511529.
[17] Debicki, K., Hashorva, E. and Soja-Kukieła, N. (2013). “Extremes of homogeneous Gaussian random fields.” {Preprint. Available at}.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Applied Probability
  • ISSN: 0021-9002
  • EISSN: 1475-6072
  • URL: /core/journals/journal-of-applied-probability
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


MSC classification


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed