Hostname: page-component-5b777bbd6c-cp4x8 Total loading time: 0 Render date: 2025-06-18T11:28:44.612Z Has data issue: false hasContentIssue false

Infinite-horizon Fuk–Nagaev inequalities

Published online by Cambridge University Press:  16 June 2025

A. J. E. M. Janssen
Affiliation:
Eindhoven University of Technology
B. Zwart*
Affiliation:
CWI and Eindhoven University of Technology
*
*Postal address: P. O. Box 94079, 1090 GB Amsterdam, The Netherlands. Email: bert.zwart@cwi.nl

Abstract

We develop explicit bounds for the tail of the distribution of the all-time supremum of a random walk with negative drift, where the increments have a truncated heavy-tailed distribution. As an application, we consider a ruin problem in the presence of reinsurance.

Type
Original Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of Applied Probability Trust

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Albrecher, H., Beirlant, J. and Teugels, J. (2017). Reinsurance: Actuarial and Statistical Aspects. John Wiley, Chichester.10.1002/9781119412540CrossRefGoogle Scholar
Albrecher, H., Chen, B., Vatamidou, E. and Zwart, B. (2020). Finite-time ruin probabilities under large-claim reinsurance treaties for heavy-tailed claim sizes. J. Appl. Prob. 57, 513530.10.1017/jpr.2020.8CrossRefGoogle Scholar
Asmussen, S. and Albrecher, H. (2010). Ruin Probabilities (Adv. Ser. Statist. Sci. Appl. Prob. 14). World Scientific, Singapore.10.1142/7431CrossRefGoogle Scholar
Asmussen, S. and Pihlsgård, M. (2005). Performance analysis with truncated heavy-tailed distributions. Methodology Comput. Appl. Prob. 7, 439457.10.1007/s11009-005-5002-1CrossRefGoogle Scholar
Bazhba, M., Blanchet, J., Rhee, C. and Zwart, B. (2020). Sample-path large deviations for Lévy processes and random walks with Weibull increments. Ann. Appl. Prob. 30, 26952739.10.1214/20-AAP1570CrossRefGoogle Scholar
Borovkov, A. A. (1973). Notes on inequalities for sums of independent variables. Theory Prob. Appl. 17, 556557.10.1137/1117068CrossRefGoogle Scholar
Chakrabarty, A. (2012). Effect of truncation on large deviations for heavy-tailed random vectors. Stoch. Process. Appl. 122, 623653.10.1016/j.spa.2011.09.006CrossRefGoogle Scholar
Chakrabarty, A. (2017). Large deviations for truncated heavy-tailed random variables: A boundary case. Indian J. Pure Appl. Math. 48, 671703.10.1007/s13226-017-0250-7CrossRefGoogle Scholar
Chen, B., Blanchet, J., Rhee, C. and Zwart, B. (2019). Efficient rare-event simulation for multiple jump events in regularly varying random walks and compound Poisson processes. Math. Operat. Res. 44, 919942.10.1287/moor.2018.0950CrossRefGoogle Scholar
Dombry, C., Tillier, C. and Wintenberger, O. (2022). Hidden regular variation for point processes and the single/multiple large point heuristic. Ann. Appl. Prob. 32, 191234.10.1214/21-AAP1675CrossRefGoogle Scholar
Fuk, D. H. (1973). Certain probabilistic inequalities for martingales. Sibirski Matematičeski Žurnal 14, 185193.Google Scholar
Fuk, D. H. and Nagaev, S. V. (1971). Probabilistic inequalities for sums of independent random variables. Teor. Verojat. Primen. 16, 660675.Google Scholar
Janssen, A. J. E. M. (2024). Bounding Taylor approximation errors for the exponential function in the presence of a power weight function. Preprint, arXiv:2403.01940.Google Scholar
Jelenkovic, P. (1999). Network multiplexer with truncated heavy-tailed arrival streams. In Proc. 18th Ann. Joint Conf. IEEE Comp. Communications Socs. IEEE Computer Society, Washington, DC, pp. 625632.Google Scholar
Kerriou, C. and Mörters, P. (2022). The fewest-big-jumps principle and an application to random graphs. Preprint, arXiv:2206.14627.Google Scholar
Kugler, J. and Wachtel, V. (2013). Upper bounds for the maximum of a random walk with negative drift. J. Appl. Prob. 50, 11311146.10.1239/jap/1389370104CrossRefGoogle Scholar
Mikosch, T. and Nagaev, A. V. (1998). Large deviations of heavy-tailed sums with applications in insurance. Extremes, 1, 81110.10.1023/A:1009913901219CrossRefGoogle Scholar
Nagaev, S. V. (1979). Large deviations of sums of independent random variables. Ann. Prob. 7, 745789.10.1214/aop/1176994938CrossRefGoogle Scholar
Rhee, C., Blanchet, J. and Zwart, B. (2016). Sample path large deviations for heavy-tailed Lévy processes and random walks. Preprint, arXiv:1606.02795v1.Google Scholar
Stegehuis, C. and Zwart, B. (2023). Scale-free graphs with many edges. Electron. Commun. Prob. 28, 111.10.1214/23-ECP567CrossRefGoogle Scholar