Publication of R.L. Tweedie
Item authored or co-authored by R.L. Tweedie, listed chronologically.
[1]
Tweedie, R. L. (1971). Stationary measures for random walk on a half line. Z. Wahrscheinlichkeitsth.
20, 28–46.
[2]
Tweedie, R. L. (1971). Truncation procedures for non-negative matrices. J. Appl. Prob.
8, 311–320.
[3]
Tweedie, R. L. (1973). The calculation of limit probabilities for denumerable Markov processes from infinitesimal properties. J. Appl. Prob.
10, 84–99.
[4]
Tweedie, R. L. (1974). A representation for invariant measures for transient Markov chains. Z. Wahrschein-lichkeitsth.
28, 99–112.
[5]
Tweedie, R. L. (1974). Some ergodic properties of the Feller minimal process. Quart. J. Math. Oxford
25, 485–495.
[6]
Tweedie, R. L. (1974).
R-theory for Markov chains on a general state-space. I. Solidarity properties and R-recurrent chains. Ann. Prob.
2, 840–864.
[7]
Tweedie, R. L. (1974).
R-theory for Markov chains on a general state-space. II. r-subinvariant measures for r-transient chains. Ann. Prob.
2, 865–878.
[8]
Tweedie, R. L. (1974). Quasi-stationary distributions for Markov chains on a general state-space. J. Appl. Prob.
11, 726–741.
[9]
Tweedie, R. L. (1975). Truncation approximation of the limit probabilities for denumerable semi-Markov processes. J. Appl. Prob.
12, 161–163.
[10]
Pollard, D. B. and Tweedie, R. L. (1975).
R-theory for Markov chains on a topological state-space. I. J. London Math. Soc.
10, 389–400.
[11]
Tweedie, R. L. (1975). Sufficient conditions for regularity, recurrence, and ergodicity of Markov processes. Math. Proc. Camb. Phil. Soc.
78, 125–136.
[12]
Tweedie, R. L. (1975). Sufficient conditions for ergodicity and recurrence of Markov chains on a general state-space. Stoch. Process. Appl.
3, 385–403.
[13]
Tweedie, R. L. (1975). The robustness of positive recurrence and recurrence of Markov chains under perturbations of the transition probabilities. J. Appl. Prob.
12, 744–752.
[14]
Tweedie, R. L. (1975). Relations between ergodicity and mean drift for Markov chains. Austral. J. Statist.
17, 96–102.
[15]
Saunders, I. W. and Tweedie, R. L. (1976). The settlement of Polynesia by CYBER 76. Math. Scientist
1, 15–26.
[16]
Pollard, D. B. and Tweedie, R. L. (1976).
R-theory for Markov chains on a topological state-space. II. Z. Wahrscheinlichkeitsth.
34, 269–278.
[17]
Tweedie, R. L. (1976). Criteria for classifying general Markov chains. Adv. Appl. Prob.
8, 737–771.
[18]
McArthur, N. A., Saunders, I. W. and Tweedie, R. L. (1976). Small population isolates: a simulation study. J. Polynesian Soc.
85, 307–326.
[19]
Nummelin, E. and Tweedie, R. L. (1976). Geometric ergodicity for a class of Markov chains. Ann. Sci. Univ. Clermont
61, 145–153.
[20]
Tweedie, R. L. (1977). Modes of convergence of Markov chain transition probabilities. J. Math. Anal. Appl.
60, 280–291.
[21]
Tweedie, R. L. (1977). Hitting times for Markov chains with application to state dependent queues. Bull. Austral. Math. Soc.
17, 97–107.
[22]
Tweedie, R. L. (1977). Criteria for classifying general Markov chains (abstract). Adv. Appl. Prob.
9, 208–210.
[23]
Tweedie, R. L. and Westcott, M. (1978). First-passage times in skip-free processes. Stoch. Process. Appl.
7, 191–204.
[24]
Nummelin, E. and Tweedie, R. L. (1978). Geometric ergodicity and R-positivity for general Markov chains. Ann. Prob.
6, 404–420.
[25]
Isaacson, D. and Tweedie, R. L. (1978). Criteria for strong ergodicity of Markov chains. J. Appl. Prob.
15, 87–95.
[26]
Arjas, E., Nummelin, E. and Tweedie, R. L. (1978). Uniform limit theorems for non-singular renewal and Markov renewal processes. J. Appl. Prob.
15, 112–125.
[27]
Laslett, G. M., Pollard, D. B. and Tweedie, R. L. (1978). Techniques for establishing ergodic and recurrent properties of continuous-valued Markov chains. Naval. Res. Logistics Quart.
25, 455–472.
[28]
Tweedie, R. L. (ed.) (1978). Proc. Conf. Spatial Patterns Process., Canberra, 12-14 May 1977 (Adv. Appl. Prob. 10 Spec. Suppl.). Applied Probability Trust, Sheffield.
[29]
Tuominen, P. and Tweedie, R. L. (1979). Markov chains with continuous components. Proc. London Math. Soc.
38, 89–114.
[30]
Tweedie, R. L. (1979). Topological aspects of Doeblin decompositions for Markov chains. Z. Wahrschein-lichkeitsth.
46, 299–305.
[31]
Tuominen, P. and Tweedie, R. L. (1979). The recurrence structure of general Markov processes. Proc. London Math. Soc.
39, 554–576.
[32]
Tweedie, R. L. (1979). Computerised anthropology—finding and settling Polynesian islands. Math. Spectrum
11, 75–81.
[33]
Schuh, H.-J. and Tweedie, R. L. (1979). Parameter estimation using transform estimation in time-evolving models. Math. Biosci.
45, 37–67.
[34]
Tuominen, P. and Tweedie, R. L. (1979). Exponential decay and ergodicity of general Markov processes and their discrete skeletons. Adv. Appl. Prob.
11, 784–803.
[35]
Tuominen, P. and Tweedie, R. L. (1979). Exponential ergodicity in Markovian queueing and dam models. J. Appl. Prob.
16, 867–880.
[36]
Arjas, E., Nummelin, E. and Tweedie, R. L. (1980). Semi-Markov processes on a general state-space: a-theory and quasi-stationary properties. J. Austral. Math. Soc. A
30, 187–200.
[37]
Athreya, K. B., Tweedie, R. L. and Vere-Jones, D. (1980). Asymptotic behaviour of point processes with Markov-dependent intervals. Math. Nachr.
99, 301–313.
[38]
Tweedie, R. L. (1980). Perturbations of countable Markov chains. Ann. Inst. Statist. Math. A.
32, 283–290.
[39]
Young, R. R., Anderson, N., Overend, D., Tweedie, R. L., Malafant, K. W. J. and Preston, G. A. N. (1980). The effect of temperature on times to hatching of eggs of the nematode Ostertagia Circumcinta
. Parasitology
81, 477–491.
[40]
Young, R. R., Nicholson, R. M., Tweedie, R. L. and Schuh, H.-J. (1980). Quantitative modeling and prediction of development times of the free living stages of Ostertagia ostertagi under controlled and field conditions. Parasitology
81, 493–505.
[41]
Low, W. A., Tweedie, R. L., Edwards, C. B. H., Hodder, R. M., Malafant, K. W. J. and Cunningham, R. B. (1981). The influence of environment on daily maintenance behaviour of free-ranging shorthorn cows in Central Australia. I: general introduction and descriptive analysis of day-long activities. Appl. Animal Ethol.
7, 11–26.
[42]
Low, W. A., Tweedie, R. L., Edwards, C. B. H., Hodder, R. M., Malafant, K. W. J. and Cunningham, R. B. (1981). The influence of environment on daily maintenance behaviour of free-ranging shorthorn cows in Central Australia. II: multivariate analysis of duration and incidence of activities. Appl. Animal Ethol.
7, 27–38.
[43]
Low, W. A., Tweedie, R. L., Edwards, C. B. H., Hodder, R. M., Malafant, K. W. J. and Cunningham, R. B. (1981). The influence of environment on daily maintenance behaviour of free-ranging shorthorn cows in Central Australia. III: detailed analysis of sequential behavior patterns and integrated discussion. Appl. Animal Ethol.
7, 39–56.
[44]
Tweedie, R. L. (1981). Criteria for ergodicity, exponential ergodicity and strong ergodicity of Markov processes. J. Appl. Prob.
18, 122–130.
[45]
Tweedie, R. L. (1982). Operator-geometric stationary distributions for Markov chains, with application to queueing models. Adv. Appl. Prob.
14, 368–391.
[46]
Brockwell, P. J., Resnick, S. I. and Tweedie, R. L. (1982). Storage processes with general release rule and additive input. Adv. Appl. Prob.
14, 392–433.
[47]
Malafant, K. W. J., and Tweedie, R. L. (1982). Computer production of kinetograms. Appl. Animal Ethol.
8, 179–187.
[48]
Trajstman, A. C., and Tweedie, R. L. (1982). Techniques for estimating parameters in Bartoszynski's virus model. Math. Biosci.
58, 277–307.
[49]
Tweedie, R. L. (1982). Criteria for rates of convergence of Markov chains, with application to queueing and storage theory. In Papers in Probability, Statistics and Analysis (London Math. Soc. Lecture Notes 79), eds Kingman, J. F. C. and Reuter, G. E. H., Cambridge University Press, pp. 260–276.
[50]
Feigin, P. D., Belyea, C. and Tweedie, R. L. (1983). Weighted area techniques for explicit parameter estimation in hierarchical models. Austral. J. Statist.
25, 1–16.
[51]
Theodorescu, R. and Tweedie, R. L. (1983). Solidarity properties and a Doeblin decomposition for a class of non-Markovian stochastic processes. Metrika
30, 37–47.
[52]
Sennott, L. I., Humblet, P. and Tweedie, R. L. (1983). Mean drifts and the non-ergodicity of Markov chains. Operat. Res.
31, 783–789.
[53]
Tweedie, R. L. (1983). The existence of moments for stationary Markov chains. J. Appl. Prob.
20, 191–196.
[54]
Leedow, M. I. and Tweedie, R. L. (1983). Weighted area techniques for the estimation of the parameters of a growth curve. Austral. J. Statist.
25, 310–320.
[55]
Henstridge, J. D. and Tweedie, R. L. (1984). A model for the growth pattern of mutton birds. Biometrics
40, 917–925.
[56]
Tweedie, R. L. and Hall, N. (1984). A rotational sampling framework for NSW health statistics (abstract). Community Health Studies
8, 144.
[57]
Arjas, E., Haara, P. and Tweedie, R. L. (1984). A system model with interacting components: renewal-type results (abstract). Adv. Appl. Prob.
16, 7–8.
[58]
Feigin, P. D. and Tweedie, R. L. (1985). Random coefficient autoregressive processes: a Markov chain analysis of stationarity and finiteness of moments. J. Time Ser. Anal.
6, 1–14.
[59]
Seneta, E. and Tweedie, R. L. (1985). Moments for stationary and quasi-stationary distributions of Markov chains. J. Appl. Prob.
22, 148–155.
[60]
Arjas, E., Haara, P. and Tweedie, R. L. (1985). Reliability in multi-component systems: structure and convergence to stationary behaviour. Optimisation
16, 297–311.
[61]
Feigin, P. D. and Tweedie, R. L. (1985). Markov-chain ergodicity and time-series models (abstract). Stoch. Process. Appl.
19, 17.
[62]
Tweedie, R. L. (1986). The existence of moments for Markov and semi-Markov processes with application to birth-death and stress release models. In Proc. 1st Pacific Statist. Cong., eds Francis, I., Manly, B. J. F., Lam, F. C., North-Holland, Amsterdam, pp. 147–149.
[63]
Hall, J., Hall, N. and Tweedie, R. L. (1986). A longitudinal study of health changes following the introduction of Medicare. In Economics and Health 1985, Proc. 7th Austral. Conf. Health Econom. (Austral. Studies Health Service Administration 56), eds Butler, J.. and Doessel, D. P., University of New South Wales, pp. 81–102.
[64]
Tweedie, R. L. (1986). Recurrence criterion. In Encyclopaedia of Statistical Sciences, Vol. 7, eds Kotz, S., Johnson, N. L. and Read, C. B., John Wiley, New York, pp. 656–658.
[65]
Tweedie, R. L. (1986). Working with official statistics: some SIROMATH experiences. Austral. J. Statist.
28, 265–286.
[66]
Tweedie, R. L. (1986). In and out of applied probability in Australia. In The Craft of Probabilistic Modelling (Appl. Prob. Ser.), ed. Gani, J., Springer, New York, pp. 291–308.
[67]
Tweedie, R. L. (1987). Statistical consulting in Australia. Liaison
2, 37–40.
[68]
Tweedie, R. L. (1988). Invariant measures for Markov chains with no irreducibility assumptions. In A Celebration of Applied Probability (J. Appl. Prob. Spec. Vol. 25A), ed. Gani, J., Applied Probability Trust, Sheffield, pp. 275–285.
[69]
Tweedie, R. L. (1988). Return state. In Encyclopaedia of Statistical Sciences, Vol. 8, eds Kotz, S., Johnson, N. L. and Read, C. B., John Wiley, New York, pp. 124–125.
[70]
Tweedie, R. L. (1989). Shaping tomorrow's university. In Proc. SOST’89, eds Clark, R. and Cameron, J., ACS, Sydney, pp. 427–439.
[71]
Feigin, P. D. and Tweedie, R. L. (1989). Linear functionals and Markov chains associated with the Dirichlet process. Math. Proc. Camb. Phil. Soc.
105, 579–585.
[72]
Tweedie, R. L. (1989). Total quality management and information technology. Internat. J. Value-Based Manag.
2, 111–125.
[73]
Dunsmuir, W. T. M., Tweedie, R. L., Flack, L. and Mengersen, K. E. (1989). Modelling of transitions between employment states for young Australians. Austral. J. Statist.
31A, 165–196.
[74]
Tweedie, R. L. (1990). Criteria for rates of convergence to stationarity in Markovian queueing models with application to the GSPP/GSPP/1 queue. In Proc. 4th Austral. Teletraffic Res. Seminar, ed. Harris, R. J., Bond University.
[75]
Tweedie, R. L. (1991). Pitman Medal awarded to E. J. Hannan. Austral. J. Statist.
33, 1–4
[76]
Brockwell, P. J., Liu, J. and Tweedie, R. L. (1992). On the existence of a stationary threshold autoregressive-moving average model. J. Time Ser. Anal.
13, 95–107.
[77]
Tweedie, R. L. (1992). Comments on the Committee for New Researchers Guidelines. Statist. Sci.
7, 263–264.
[78]
Meyn, S. P. and Tweedie, R. L. (1992). Stability of Markovian processes I: criteria for discrete-time chains. Adv. Appl. Prob.
24, 542–574.
[79]
Tweedie, R. L. and Mengersen, K. L. (1992). Lung cancer and passive smoking: reconciling the biochemical and epidemiological approaches. British J. Cancer
66, 700–705.
[80]
Meyn, S. P. and Tweedie, R. L. (1993). Markov Chains and Stochastic Stability. Springer, London.
[81]
Meyn, S. P. and Tweedie, R. L. (1993). The Doeblin decomposition. Contemp. Math. 149, 211–225.
[82]
Meyn, S. P. and Tweedie, R. L. (1993). Generalised resolvents and Harris recurrence of Markov processes. Contemp. Math. 149, 227–250.
[83]
Meyn, S. P. and Tweedie, R. L. (1993). Stability of Markovian processes II: continuous-time and sampled chains. Adv. Appl. Prob. 25, 487–517.
[84]
Meyn, S. P. and Tweedie, R. L. (1993). Stability of Markovian processes III: Foster-Lyapunov criteria for continuous-time processes. Adv. Appl. Prob. 25, 518–548.
[85]
Tweedie, R. L., Zhu, ζ. Y. and Choy, S. L. (1993). Parameter estimation using Laplace transforms in the M/M/1 queue. Tech. Rep. 93/6, Department of Statistics, Colorado State University.
[86]
Tweedie, R. L. (1994). Computable convergence rates and geometric ergodicity for Markovian queueing systems. In Proc. 31st Allerton Conf. Commun. Control Comput. (October 1993), eds Sarwate, D. P. and van Dooren, P., University of Illinois Press, Champaign, IL, pp. 404–412.
[87]
Meyn, S. P. and Tweedie, R. L. (1994). State-dependent criteria for convergence of Markov chains. Ann. Appl. Prob. 4, 149–168.
[88]
Spieksma, F. M. and Tweedie, R. L. (1994). Strengthening ergodicity to geometric ergodicity for Markov chains. Commum. Statist. Stoch. Models
10, 45–74.
[89]
Tweedie, R. L., Mengersen, K. L. and Eccleston, J. A. (1994). Garbage in, garbage out: can statisticians quantify the effects of poor data?
Chance
7, 20–27.
[90]
Tweedie, R. L. (1994). Topological conditions enabling use of Harris methods in discrete and continuous time. Acta Appl. Math. 34, 175–188.
[91]
Stramer, O. and Tweedie, R. L. (1994). Stability and instability of continuous time Markov processes. In Probability, Statistics and Optimization: a Tribute to Peter Whittle, ed. Kelly, F. P., John Wiley, London, pp. 173–183.
[92]
Meyn, S. P. and Tweedie, R. L. (1994). Computable bounds for geometric convergence rates of Markov chains. Ann. Appl. Prob. 4, 981–1011.
[93]
Meyn, S. P. and Tweedie, R. L. (1994). A survey of Foster-Lyapunov conditions for general state-space Markov processes. In Proc. Workshop Stoch. Stability Stoch. Stabilization (Metz, France, June 1993), Springer, Berlin.
[94]
Tuominen, P. and Tweedie, R. L. (1994). Subgeometric rates of convergence of f-ergodic Markov chains. Adv. Appl. Prob. 26, 775–798.
[95]
Biggerstaff, B., Tweedie, R. L. and Mengersen, K. L. (1994). Passive smoking in the workplace: classical and Bayesian meta-analyses. Internat. Arch. Occupational Environmental Health
66, 269–277.
[96]
Tweedie, R. L. and Mengersen, K. L. (1995). Meta-analytic approaches to dose-response relationships, with application in studies of lung cancer and exposure to environmental tobacco smoke. Statist. Medicine
14, 545–569.
[97]
Mengersen, K. L., Tweedie, R. L. and Biggerstaff, B. (1995). The impact of method choice in meta-analysis. Austral. J. Statist. 37, 19–44.
[98]
Down, D., Meyn, S. P. and Tweedie, R. L. (1995). Exponential and uniform ergodicity of Markov processes. Ann. Prob. 23, 1671–1691.
[99]
Mengersen, K. L. and Tweedie, R. L. (1995). Comments on ‘Convergence of Markov chain Monte Carlo algorithms’ by N. G. Polson. In Bayesian Statistics 5, Proc. 5th Valencia Internat. Meeting (5-9 June 1994, Alicante), eds Bernardo, J. M., Berger, J. O., Dawid, A. P. and Smith, A. F. M., Oxford University Press, pp. 317–318.
[100]
Mengersen, K. L. and Tweedie, R. L. (1996). Rates of convergence of the Hastings and Metropolis algorithms. Ann. Statist. 24, 101–121.
[101]
Lund, R. and Tweedie, R. L. (1996). Geometric convergence rates for stochastically ordered Markov chains. Math. Operat. Res. 21, 182–194.
[102]
Roberts, G. O. and Tweedie, R. L. (1996). Geometric convergence and central limit theorems for multidimensional Hastings and Metropolis algorithms. Biometrika
83, 95–110.
[103]
Tweedie, R. L., Scott, D. J., Biggerstaff, B. J. and Mengersen, K. L. (1996). Bayesian meta-analysis, with application to studies of ETS and lung cancer. Lung Cancer
14, S171–S194.
[104]
Stramer, O., Brockwell, P. J. and Tweedie, R. L. (1996). Continuous-time threshold AR(1) models. Adv. Appl. Prob. 28, 728–746.
[105]
Stramer, O., Tweedie, R. L. and Brockwell, P. J. (1996). Existence and stability of continuous time threshold ARMA precesses. Statist. Sinica
6, 715–732.
[106]
Meyn, S. P., Lund, R. and Tweedie, R. L. (1996). Rates of convergence of stochastically monotone Markov processes. Ann. Appl. Prob. 6, 218–237.
[107]
Scott, D. J. and Tweedie, R. L. (1996). Explicit rates of convergence of stochastically monotone Markov chains. In Proc. Athens Conf. Appl. Prob. Time Ser. Anal., eds Heyde, C. C., Prohorov, Yu. V., Pyke, R. and Rachev, S. T., Springer, New York, pp. 176–191.
[108]
Roberts, G. O. and Tweedie, R. L. (1996). Exponential convergence of Langevin diffusions and their discrete approximations. Bernoulli
2, 341–363.
[109]
Tweedie, R. L. (1996). Electronic publishing in the IMS: a step forward. IMS Bull. 25, 627–629.
[110]
LaFleur, B., Taylor, S. J., Smith, D. D. and Tweedie, R. L. (1996). Bayesian assessment of publication bias in meta-analyses of cervical cancer and oral contraceptives. In Proc. Epidemiology Section 1996 Joint Statist. Meetings, American Statistical Association, Alexandria, VA, pp. 32–37.
[111]
Chen, P. and Tweedie, R. L. (1997). Orthogonal measures and absorbing sets for Markov chains. Math. Proc. Camb. Phil. Soc. 121, 101–113.
[112]
Biggerstaff, B. J. and Tweedie, R. L. (1997). Incorporating variability in estimates of heterogeneity in the random effects model in meta-analysis. Statist. Medicine
16, 753–768.
[113]
Tweedie, R. L. (1997). Annals of Applied Probability. In Encyclopedia of Statistical Sciences, Update Vol. 1, eds Kotz, S., Read, C. B. and Banks, D. L., John Wiley, New York, pp. 30–32.
[114]
Stramer, O. and Tweedie, R. L. (1997). Existence and stability of weak solutions to stochastic differential equations with non-smooth coefficients. Statist. Sinica
7, 577–594.
[115]
Taylor, S. J. and Tweedie, R. L. (1997). Assessing sensitivity to multiple factors in calculating attributable risk. Environmetrics
8, 351–372.
[116]
Givens, G. E., Smith, D. D. and Tweedie, R. L. (1997). Publication bias in meta-analysis: a Bayesian data-augmentation approach to account for issues exemplified in the passive smoking debate (with discussion). Statist. Sci. 12, 221–250.
[117]
Tweedie, R. L. (1998). Consulting: real problems, real interactions, real outcomes. Statist. Sci. 13, 1–3.
[118]
Hall, N. and Tweedie, R. L. (1998). Queueing at the tax office. Statist. Sci. 13, 18–23.
[119]
Tweedie, R. L. (1998). Assessing sensitivity to data problems in epidemiological meta-analyses. Proc. 51st Session ISI (Istanbul, August 1997), Vol. 3, International Statistical Institute, Amsterdam, pp. 556–559.
[120]
Foss, S. G. and Tweedie, R. L. (1998). Perfect simulation and backward coupling. Commun. Statist. Stoch. Models
14, 187–203.
[121]
Tweedie, R. L. (1998). Roles for societies in statistical education statistical education—expanding the network. In Proc. 5th ICOTS, ed. Pereira-Mendoza, L., International Statistical Institute, Amsterdam, pp. 439–444.
[122]
Foss, S. G., Tweedie, R. L. and Corcoran, J. N. (1998). Simulating the invariant measures of Markov chains using backward coupling at regeneration time. Prob. Eng. Inf. Sci. 12, 303–320.
[123]
Tweedie, R. L. (1998). Truncation approximations of invariant measures for Markov chains. J. Appl Prob. 35, 517–536.
[124]
Duval, S. and Tweedie, R. L. (1998). Practical estimates of the effect of publication bias in meta-analysis. Austral. Epidemiol. 5, 14–17.
[125]
Roberts, G. O. and Tweedie, R. L. (1999). Bounds on regeneration times and convergence rates for Markov chains. Stoch. Process. Appl. 80, 211–229. (Corrigendum: 91 (2001), 337-338.)
[126]
Mengersen, K. L., Merrilees, M. and Tweedie, R. L. (1999). Environmental tobacco smoke and ischaemic heart disease: a case study in applying causal criteria. Internat. Arch. Occupational Environmental Health
72, Suppl.
R1–R40.
[127]
Mengersen, K. L. and Tweedie, R. L. (1999). Calculating accuracy rates from multiple assessors with limited information. Amer. Statistician
53, 233–238.
[128]
Stramer, O. and Tweedie, R. L. (1999). Langevin-type models I: diffusions with given stationary distributions, and their discretizations. Methodol. Comput. Appl. Prob. 1, 283–306.
[129]
Stramer, O. and Tweedie, R. L. (1999). Langevin-type models II: self-targeting candidates for MCMC algorithms. Methodol. Comput. Appl. Prob. 1, 307–328.
[130]
Smith, D. D., Givens, G. E. and Tweedie, R. L. (2000). Adjustment for publication bias and quality bias in Bayesian meta-analysis. In Meta-analysis in Medicine and Health Policy, eds Berry, D. and Stangl, D., Marcel Dekker, New York, pp. 277–304.
[131]
Duval, S. J. and Tweedie, R. L. (2000). A nonparametric ‘trim and fill’ method of assessing publication bias in meta-analysis. J. Amer. Statist. Assoc. 95, 89–98.
[132]
Duval, S. J. and Tweedie, R. L. (2000). Trim and fill: a simple funnel plot based method of testing and adjusting for publication bias in meta-analysis. Biometrics, 56, 276–284.
[133]
Sutton, A. J., Duval, S. J., Tweedie, R. L., Abrams, K. R. and Jones, D. R. (2000). Empirical assessment of effect of publication bias on meta-analyses. British Medical J. 320, 1574–1577.
[134]
Roberts, G. O. and Tweedie, R. L. (2000). Rates of convergence of stochastically monotone stochastic processes. J. Appl. Prob. 37, 359–373.
[135]
Grunwald, G. K., Hyndman, R. J., Tedesco, L. and Tweedie, R. L. (2000). Non-Gaussian conditional linear AR(1) models. Austral. N. Z. J. Statist. 42, 479–495.
[136]
Sexton, K., Greaves, I. A., Church, T. R., Adgate, J. L., Ramachandran, G., Tweedie, R. L., Fredrickson, A.
Geisser, M., Sikorski, M., Fischer, G., Jones, D. and Ellringer, P. (2000). A school-based strategy to assess children's environmental exposures and related health effects in economically disadvantaged urban neighborhoods. J. Exposure Anal. Environmental Epidemiol. 10, 682–694.
[137]
Tweedie, R. L. (2001). Markov chains: structure and applications. In Handbook of Statistics, Vol. 19, Stochastic Processes: Theory and Methods, eds Shanbhag, D. N. and Rao, C. R., Elsevier, Amsterdam, pp. 817–851.
[138]
Corcoran, J. N. and Tweedie, R. L. (2001). Perfect sampling for ergodic Harris chains. Ann. Appl. Prob. 11, 438–451.
[139]
Tweedie, R. L. (2001). Drift conditions and invariant measures for Markov chains. Stoch. Process. Appl. 92, 345–354.
[140]
Roberts, G. O. and Tweedie, R. L. (2001). Geometric L^{2} and L^{1} convergence are equivalent for reversible Markov chains. In Probability, Statistics and Seismology (J. Appl. Prob. Spec. Vol. 38A), ed. Daley, D. J., Applied Probability Trust, Sheffield, pp. 37–41.
[141]
Wall, M., Boen, J. and Tweedie, R. L. (2001). An effective CI for the mean with samples of size 1 and 2. Amer. Statistician
55, 102–105.
[142]
Tweedie, R. L. and Corcoran, J. N. (2001). Perfect sampling and queuing models. In Proc. 38th Annual Allerton Conf. Commun. Control Comput. (4-6 October 2000), University of Illinois Press, Champaign, IL, pp. 116–124.
[143]
Henderson, S. and Tweedie, R. L. (2001). Perfect sampling for Markov chains arising from discrete event simulation. In Proc. 38th Annual Allerton Conf. Commun. Control Comput. (4-6 October 2000), University of Illinois Press, Champaign, IL, pp. 1125–1134.
[144]
Guglielmi, A. and Tweedie, R. L. (2001). Markov chain Monte Carlo estimation of the law of the mean of a Dirichlet process. Bernoulli
4, 573–592.
[145]
Jarner, S. F. and Tweedie, R. L. (2001). Locally contracting iterated functions and stability of Markov chains. J. Appl. Prob. 38, 494–507.
[146]
Stramer, O. and Tweedie, R. L. (2001). Existence and stability of weak solutions to stochastic differential equations with non-smooth coefficients. Statist. Sinica
7, 577–593.
[147]
Tweedie, R. L. (2001). Meta-analysis: overview. In International Encyclopedia of Social and Behavioral Sciences, Vol. 14, eds Smelser, N. J. and Baltes, P. B., Elsevier, Amsterdam, pp. 9717–9724.
[148]
Hoeting, J. A. and Tweedie, R. L. (2001). Parameter estimation for models of biological stage-frequency data, In Proc. Graybill Conf. Linear Models (13-15 June 2001, Colorado State University).
[149]
Hoeting, J. A. and Tweedie, R. L. (2001). Transform estimation of parameters for stage-frequency data. Tech. Rep. 2001-2, Department of Statistics, Colorado State University. Available at http://www.stat.colostate.edu/Documents/.
[150]
Hoeting, J. A., Johnson, D. S. and Tweedie, R. L. (2001). Empirical transform estimation of parameters in the monomolecular growth model. Tech. Rep. 2001-5, Department of Statistics, Colorado State University. Available at http://www.stat.colostate.edu/Documents/.
[151]
Fonseca, G. and Tweedie, R. L. (2001). Stationary measures for non-irreducible non-continuous Markov chains with time series applications. Submitted.
[152]
Jarner, S. F. and Tweedie, R. L. (2001). Stability properties of Markov chains defined via iterated random functions. Submitted.
[153]
Cooper, W. L. and Tweedie, R. L. (2001). Perfect simulation of an inventory model for perishable products. Submitted.
[154]
Tweedie, R. L. (2001). Convergence of Markov chains from all starting points, with applications to Metropolis-Hastings algorithms. Submitted.
[155]
Saleh, K. J., Dykes, D. C., Ravichandran, A., Saleh, R. M., Mohamed, K., Gioe, T. J., Heck, D. A. and Tweedie, R. L. (2001). Functional outcome following total knee athroplasty revision: a meta-analysis. Submitted.
[156]
Jarner, S. F. and Tweedie, R. L. (2001). Convergence rates and moments of Markov chains associated with the mean of Dirichlet processes. Submitted.
[157]
Jarner, S. F. and Tweedie, R. L. (2001). Necessary conditions for geometric and polynomial ergodicity of random walk-type Markov chains. Submitted.
[158]
Tweedie, R. L. (2002). Meta-analysis. In Encyclopedia of Environmetrics, eds El-Shaarawi, A. H. and Piegorsch, W. W., John Wiley, New York.
[159]
Tweedie, R. L. (2002). Environmental tobacco smoke. In Encyclopedia of Environmetrics, eds El-Shaarawi, A. H. and Piegorsch, W. W., John Wiley, New York.
[160]
Tweedie, R. L. and Corcoran, J. N. (2002). Perfect sampling from independent Metropolis-Hastings chains. J. Statist. Planning Infer. 104, 297–314.