Hostname: page-component-76fb5796d-vfjqv Total loading time: 0 Render date: 2024-04-28T20:46:10.427Z Has data issue: false hasContentIssue false

On maxima of stationary fields

Published online by Cambridge University Press:  11 December 2019

N. Soja-Kukieła*
Affiliation:
Nicolaus Copernicus University
*
*Postal address: Faculty of Mathematics and Computer Science, Nicolaus Copernicus University, ul. Chopina 12/18, 87-100 Toruń, Poland. Email address: natas@mat.umk.pl

Abstract

Let $\{X_{\textbf{n}} \colon \textbf{n}\in{\mathbb Z}^d\}$ be a weakly dependent stationary random field with maxima $M_{A} :=, \sup\{X_{\textbf{i}} \colon \textbf{i}\in A\}$ for finite $A\subset{\mathbb Z}^d$ and $M_{\textbf{n}} := \sup\{X_{\textbf{i}} \colon \mathbf{1} \leq \textbf{i} \leq \textbf{n} \}$ for $\textbf{n}\in{\mathbb N}^d$ . In a general setting we prove that ${\mathbb{P}}(M_{(N_1(n),N_2(n),\ldots, N_d(n))} \leq v_n)$ $= \exp(\!- n^d {\mathbb{P}}(X_{\mathbf{0}} > v_n , M_{A_n} \leq v_n)) + {\text{o}}(1)$ for some increasing sequence of sets $A_n$ of size $ {\text{o}}(n^d)$ , where $(N_1(n),N_2(n), \ldots,N_d(n))\to(\infty,\infty, \ldots, \infty)$ and $N_1(n)N_2(n)\cdots N_d(n)\sim n^d$ . The sets $A_n$ are determined by a translation-invariant total order $\preccurlyeq$ on ${\mathbb Z}^d$ . For a class of fields satisfying a local mixing condition, including m-dependent ones, the main theorem holds with a constant finite A replacing $A_n$ . The above results lead to new formulas for the extremal index for random fields. The new method for calculating limiting probabilities for maxima is compared with some known results and applied to the moving maximum field.

Type
Research Papers
Copyright
© Applied Probability Trust 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arratia, R., Goldstein, L. and Gordon, L. (1990). Poisson approximation and the Chen–Stein method. Statist. Sci. 5, 403424.CrossRefGoogle Scholar
Barbour, A. D. and Chryssaphinou, O. (2001). Compound Poisson approximation: a user’s guide. Ann. Appl. Prob. 11, 9641002.Google Scholar
Basrak, B. and Tafro, A. (2014). Extremes of moving averages and moving maxima on a regular lattice. Prob. Math. Statist. 34, 6179.Google Scholar
Basrak, B. and Planinić, H. (2018). Compound Poisson approximation for random fields with application to sequence alignment. Available at arXiv:1809.00723.Google Scholar
Chernick, M. R., Hsing, T. and McCormick, W. P. (1991). Calculating the extremal index for a class of stationary sequences. Adv. Appl. Prob. 23, 835850.CrossRefGoogle Scholar
Choi, H. (2002). Central limit theory and extremes of random fields. Doctoral thesis, University of North Carolina, Chapel Hill.Google Scholar
Cline, D. (1983). Infinite series of random variables with regularly varying tails. Technical report 83–24, Institute of Applied Mathematics and Statistics, University of British Columbia.Google Scholar
Ferreira, H. and Pereira, L. (2008). How to compute the extremal index of stationary random fields. Statist. Prob. Lett. 78, 13011304.CrossRefGoogle Scholar
French, J. P. and Davis, R. A. (2013). The asymptotic distribution of the maxima of a Gaussian random field on a lattice. Extremes 16, 126.CrossRefGoogle Scholar
Jakubowski, A. (1991). Relative extremal index of two stationary processes. Stoch. Process. Appl. 37, 281297.CrossRefGoogle Scholar
Jakubowski, A. and Rosiński, J. (1999). Local dependencies in random fields via a Bonferroni type inequality. Contemp. Math. 234, 8595.CrossRefGoogle Scholar
Jakubowski, A. and Soja-Kukieła, N. (2019). Managing local dependencies in asymptotic theory for maxima of stationary random fields. Extremes 22, 293315.CrossRefGoogle Scholar
Jakubowski, A. and Soja-Kukieła, N. Directional phantom distribution functions for stationary random fields. In preparation.Google Scholar
Leadbetter, M. R. (1983). Extremes and local dependence in stationary sequences. Z. Wahrscheinlichkeitsth. 65, 291306.CrossRefGoogle Scholar
Ling, C. (2019). Extremes of stationary random fields on a lattice. Extremes 22, 391411.CrossRefGoogle Scholar
Newell, G. F. (1964). Asymptotic extremes for m-dependent random variables. Ann. Math. Statist. 35, 13221325.CrossRefGoogle Scholar
O’Brien, G. (1987). Extreme values for stationary and Markov sequences. Ann. Prob. 15, 281291.CrossRefGoogle Scholar
Pereira, L., Martins, A. P. and Ferreira, H. (2017). Clustering of high values in random fields. Extremes 20, 807838.CrossRefGoogle Scholar
Turkman, K. F. (2006). A note on the extremal index for space-time processes. J. Appl. Prob. 43, 114126.CrossRefGoogle Scholar
Wu, L. and Samorodnitsky, G. (2018). Regularly varying random fields. Available at arXiv:1809.04477.Google Scholar