Hostname: page-component-76fb5796d-qxdb6 Total loading time: 0 Render date: 2024-04-29T01:51:05.964Z Has data issue: false hasContentIssue false

On the cumulant transforms for Hawkes processes

Published online by Cambridge University Press:  23 February 2023

Young Lee*
Affiliation:
Harvard University
Thorsten Rheinländer*
Affiliation:
Technische Universität Wien
*
*Postal address: Harvard University, 1 Oxford Street, Cambridge, MA 02138, USA.
**Postal address: Wiedner Hauptstr. 8/E105-1 1040 Vienna, Austria.

Abstract

We consider the asset price as the weak solution to a stochastic differential equation driven by both a Brownian motion and the counting process martingale whose predictable compensator follows shot-noise and Hawkes processes. In this framework, we discuss the Esscher martingale measure where the conditions for its existence are detailed. This generalizes certain relationships not yet encountered in the literature.

Type
Original Article
Copyright
© The Author(s), 2023. Published by Cambridge University Press on behalf of Applied Probability Trust

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aït-Sahalia, Y., Cacho-Diaz, J. and Laeven, R. J. A. (2015). Modeling financial contagion using mutually exciting jump processes. J. Financial Econom. 117, 585606.CrossRefGoogle Scholar
Ansel, J.-P. and Stricker, C. (1992). Lois de martingale, densités et décomposition de Föllmer Schweizer. Ann. Inst. H. Poincaré Prob. Statist. 28, 375392.Google Scholar
Asmussen, S. (1985). Conjugate processes and the simulation of ruin problems. Stoch. Process. Appl. 20, 213229.CrossRefGoogle Scholar
Barndorff-Nielsen, O. and Shephard, N. (2001). Modelling by Lévy processes for financial econometrics. In Lévy Processes, Birkhäuser, Boston, pp. 283318.CrossRefGoogle Scholar
Boswijk, H., Peter, R. J. A. L. and Lalu, A. (2016). Asset returns with self-exciting jumps: option pricing and estimation with a continuum of moments. Tech. Rep., University of Amsterdam.Google Scholar
Bouleau, N. and Lamberton, D. (1989). Residual risks and hedging strategies in Markovian markets. Stoch. Process. Appl. 33, 131150.CrossRefGoogle Scholar
Boumezoued, A. (2016). Population viewpoint on Hawkes processes. Adv. Appl. Prob. 48, 463480.CrossRefGoogle Scholar
Brémaud, P. and Massoulié, L. (2002). Power spectra of general shot noises and Hawkes point processes with a random excitation. Adv. Appl. Prob. 34, 205222.CrossRefGoogle Scholar
Carr, P. and Geman, H. (2002). The fine structure of asset returns: an empirical investigation. J. Business 75, 305332.CrossRefGoogle Scholar
Chan, T. (1999). Pricing contingent claims on stocks driven by Lévy processes. Ann. Appl. Prob. 9, 504528.CrossRefGoogle Scholar
Choulli, T. and Stricker, C. (2005). Minimal entropy-Hellinger martingale measure in incomplete markets. Math. Finance 15, 465490.CrossRefGoogle Scholar
Clark, P. K. (1973). A subordinated stochastic process model with finite variance for speculative prices. Econometrica 41, 135155.CrossRefGoogle Scholar
Cox, D. R. and Isham, V. (1980). Point Processes. Chapman and Hall/CRC, Boca Raton.Google Scholar
Daley, D. J. and Vere-Jones, D. (2003). An Introduction to the Theory of Point Processes, 2nd edn. Springer, New York.Google Scholar
Dassios, A. and Zhao, H. (2011). A dynamic contagion process. Adv. Appl. Prob. 43, 814846.CrossRefGoogle Scholar
Dassios, A. and Zhao, H. (2012). Ruin by dynamic contagion claims. Insurance Math. Econom. 51, 93106.CrossRefGoogle Scholar
Delbaen, F. et al. (2002). Exponential hedging and entropic penalties. Math. Finance 12, 99123.CrossRefGoogle Scholar
Eberlein, E. and Jacod, J. (1997). On the range of options prices. Finance Stoch. 1, 131140.CrossRefGoogle Scholar
Eberlein, E. and Keller, U. (1995). Hyperbolic distributions in finance. Bernoulli 1, 281299.CrossRefGoogle Scholar
Elliott, R. and Siu, T. (2010). On risk minimizing portfolios under a Markovian regime-switching Black–Scholes economy. Ann. Operat. Res. 176, 271291.CrossRefGoogle Scholar
Gao, X., Zhou, X. and Zhu, L. (2018). Transform analysis for Hawkes processes with applications in dark pool trading. Quant. Finance 18, 265282.CrossRefGoogle Scholar
Gerber, H. and Shiu, E. (1994). Option pricing by Esscher transforms. Trans. Soc. Actuaries 46, 99140.Google Scholar
He, S., Wang, J. and Yan, J. (1998). Semimartingale Theory and Stochastic Calculus. CRC Press, Boca Raton.Google Scholar
Hubalek, F. and Sgarra, C. (2009). On the Esscher transforms and other equivalent martingale measures for Barndorff-Nielsen and Shephard stochastic volatility models with jumps. Stoch. Process. Appl. 119, 21372157.CrossRefGoogle Scholar
Hull, J. and White, A. (1987). The pricing of options on assets with stochastic volatilities. J. Finance 42, 281300.CrossRefGoogle Scholar
Jacod, J. and Shiryaev, A. (2003). Limit Theorems for Stochastic Processes, 2nd edn. Springer, Berlin.CrossRefGoogle Scholar
Kallsen, J. and Shiryaev, A. N. (2002). The cumulant process and Esscher’s change of measure. Finance Stoch. 6, 397428.CrossRefGoogle Scholar
Last, G. and Brandt, A. (1995). Marked Point Processes on the Real Line: The Dynamical Approach. Springer, New York.Google Scholar
Madan, D. B., Carr, P. and Chang, E. C. (1998). The variance gamma process and option pricing. Europ. Finance Rev. 2, 79105.CrossRefGoogle Scholar
Madan, D. B. and Milne, F. (1991). Option pricing with v. g. martingale components. Math. Finance 1, 3955.Google Scholar
Mandelbrot, B. and Taylor, H. M. (1967). On the distribution of stock price differences. Operat. Res. 15, 10571062.CrossRefGoogle Scholar
Masi, G. B. D., Kabanov, Y. and Runggaldier, W. J. (1995). Mean-variance hedging of options on stocks with Markov volatilities. Theory Prob. Appl. 39, 172182.CrossRefGoogle Scholar
Merton, R. C. (1976). Option pricing when underlying stock returns are discontinuous. J. Financial Econom. 3, 125144.CrossRefGoogle Scholar
Oakes, D. (1975). The Markovian self-exciting process. J. Appl. Prob. 12, 6977.CrossRefGoogle Scholar
Ogata, Y. (1998). Space-time point-process models for earthquake occurrences. Ann. Inst. Statist. Math. 50, 379402.CrossRefGoogle Scholar
Omori, F. (1894). On the aftershocks of earthquakes. J. College Sci. Imperial Univ. Tokyo 7, 111120.Google Scholar
Protter, P. (2005). Stochastic Integration and Differential Equations. Springer, Berlin, Heidelberg.CrossRefGoogle Scholar
Protter, P. and Shimbo, K. (2008). No arbitrage and general semimartingales. In Markov Processes and Related Topics: A Festschrift for Thomas G. Kurtz (Inst. Math. Statist. Collect. 4), Institute of Mathematical Statistics, Beachwood, OH, pp. 267283.CrossRefGoogle Scholar
Schmidhuber, J. (2015). Deep learning in neural networks: an overview. Neural Networks 61, 85117.CrossRefGoogle ScholarPubMed
Schoutens, W. (2003). Lévy Processes in Finance: Pricing Financial Derivatives. John Wiley, Chichester.CrossRefGoogle Scholar
Utsu, T., Ogata, Y. and Matsu’ura, R. S. (1995). The centenary of the Omori formula for a decay law of aftershock activity. J. Phys. Earth 43, 133.CrossRefGoogle Scholar
Zell, A. (1997). Simulation neuronaler Netze. Oldenbourg, Munich.Google Scholar
Çetin, U. and Verschuere, M. (2009). Pricing and hedging in carbon emissions markets. Internat. J. Theoret. Appl. Finance 12, 949967.CrossRefGoogle Scholar