Skip to main content Accessibility help
×
Home

On the singular components of a copula

  • Fabrizio Durante (a1), Juan Fernández-Sánchez (a2) and Wolfgang Trutschnig (a3)

Abstract

We analyze copulas with a nontrivial singular component by using their Markov kernel representation. In particular, we provide existence results for copulas with a prescribed singular component. The constructions not only help to deal with problems related to multivariate stochastic systems of lifetimes when joint defaults can occur with a nonzero probability, but even provide a copula maximizing the probability of joint default.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      On the singular components of a copula
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      On the singular components of a copula
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      On the singular components of a copula
      Available formats
      ×

Copyright

Corresponding author

Postal address: Faculty of Economics and Management, Free University of Bozen-Bolzano, Bolzano, Italy. Email address: fabrizio.durante@unibz.it
∗∗ Postal address: Grupo de Investigación de Análisis Matemático, Universidad de Almería, La Cañada de San Urbano, Almería, Spain. Email address: juan.fernandez@ual.es
∗∗∗ Postal address: Department for Mathematics, University of Salzburg, Salzburg, Austria. Email address: wolfgang@trutschnig.net

References

Hide All
[1] Ash, R. B. (2000). Probability and Measure Theory, 2nd edn. Harcourt/Academic Press, Burlington, MA.
[2] De Amo, E., Díaz Carrillo, M. and FernáNdez-Sánchez, J. (2010). On concordance measures and copulas with fractal support. In Combining Soft Computing and Statistical Methods in Data Analysis (Adv. Intelligent Soft Comput. 77), eds Borgelt, C. et al., Springer, Berlin, pp. 131138.
[3] Durante, F., FernáNdez Sánchez, J. and Sempi, C. (2013). A note on the notion of singular copula. Fuzzy Sets Systems 211, 120122.
[4] Durante, F., Foschi, R. and Spizzichino, F. (2010). Aging functions and multivariate notions of NBU and IFR. Prob. Eng. Inf. Sci. 24, 263278.
[5] Durante, F., Sarkoci, P. and Sempi, C. (2009). Shuffles of copulas. J. Math. Anal. Appl. 352, 914921.
[6] Fredricks, G. A., Nelsen, R. B. and RodríGuez-Lallena, J. A. (2005). Copulas with fractal supports. Insurance Math. Econom. 37, 4248.
[7] Jaworski, P., Durante, F. and Härdle, W. K., (eds) (2013). Copulae in Mathematical and Quantitative Finance (Lecture Notes Statist. 213). Springer, Berlin.
[8] Jaworski, P., Durante, F., Härdle, W. K. and Rychlik, T., (eds) (2010). Copula Theory and Its Applications (Lecture Notes Statist. 198). Springer, Berlin.
[9] Joe, H. (1997). Multivariate Models and Dependence Concepts (Monogr. Statist. Appl. Prob. 73). Chapman & Hall, London.
[10] Joe, H. (2015). Dependence Modeling with Copulas. CRC, Boca Raton, FL.
[11] Kallenberg, O. (2002). Foundations of Modern Probability, 2nd edn. Springer, New York.
[12] Lange, K. (1973). Decompositions of substochastic transition functions. Proc. Amer. Math. Soc. 37, 575580.
[13] Mai, J.-F. and Scherer, M. (2012). Simulating Copulas (Ser. Quant. Finance 4). Imperial College Press, London.
[14] Mai, J.-F. and Scherer, M. (2014). Simulating from the copula that generates the maximal probability for a joint default under given (inhomogeneous) marginals. In Topics in Statistical Simulation, eds Melas, V. B. et al., Springer, New York, pp. 333341.
[15] Navarro, J. and Spizzichino, F. (2010). Comparisons of series and parallel systems with components sharing the same copula. Appl. Stoch. Models Business Industry 26, 775791.
[16] Navarro, J., Del áGuila, Y., Sordo, M. A. and SuáRez-Llorens, A. (2013). Stochastic ordering properties for systems with dependent identically distributed components. Appl. Stoch. Models Business Industry 29, 264278.
[17] Thorisson, H. (2000). Coupling, Stationarity, and Regeneration. Springer, New York.
[18] Trutschnig, W. and FernáNdez Sánchez, J. (2013). Some results on shuffles of two-dimensional copulas. J. Statist. Planning Infer. 143, 251260.
[19] Trutschnig, W. and FernáNdez-Sánchez, J. (2014). Copulas with continuous, strictly increasing singular conditional distribution functions. J. Math. Anal. Appl. 410, 10141027.

Keywords

MSC classification

Related content

Powered by UNSILO

On the singular components of a copula

  • Fabrizio Durante (a1), Juan Fernández-Sánchez (a2) and Wolfgang Trutschnig (a3)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.