[1]
Albin, J. M. P. and Choi, H. (2010). A new proof of an old result by Pickands. Electron. Commun. Prob. 15
339-345.

[2]
Asmussen, S. and Albrecher, H. (2010). Ruin Probabilities, 2nd edn.
World Scientific, Hackensack, NJ.

[3]
Berman, S. M. (1992). Sojourns and Extremes of Stochastic Processes. Wadsworth & Brooks/Cole Advanced Books & Software, Pacific Grove, CA.

[4]
Chesney, M., Jeanblanc-Picqué, M. and Yor, M. (1997). Brownian excursions and Parisian barrier options. Adv. Appl. Prob. 29
165-184.

[5]
Czarna, I. (2014). Parisian ruin probability with a lower ultimate bankrupt barrier. Scand. Actuarial J. 10.1080/03461238.2014.926288.

[6]
Czarna, I. and Palmowski, Z. (2011). Ruin probability with Parisian delay for a spectrally negative Lévy risk process. J. Appl. Prob. 48
984-1002.

[7]
Czarna, I. and Palmowski, Z. (2014). Dividend problem with Parisian delay for a spectrally negative Lévy risk process. J. Optimization Theory Appl. 161
239-256.

[8]
Czarna, I. and Palmowski, Z. (2014). Parisian quasi-stationary distributions for asymmetric Lévy processes. Preprint. Available at http://arxiv.org/abs/1404.3367.
[9]
Czarna, I., Palmowski, Z. and Światek, P. (2014). Binomial discrete time ruin probability with Parisian delay. Preprint. Available at http://arxiv.org/abs/1403.7761.
[11]
Debicki, K. (2002). Ruin probability for Gaussian integrated processes. Stoch. Process. Appl. 98
151-174.

[12]
Debicki, K. and Kisowski, P. (2008). A note on upper estimates for Pickands constants. Statist. Prob. Lett. 78
2046-2051.

[13]
Debicki, K. and Kosiński, K. M. (2014). On the infimum attained by the reflected fractional Brownian motion. Extremes
17
431-446.

[14]
Debicki, K., Hashorva, E. and Ji, L. (2015). Gaussian risk models with financial constraints. Scand. Actuarial J. 6, 469–481.

[15]
Debicki, K., Hashorva, E. and Ji, L. (2014). Tail asymptotics of supremum of certain Gaussian processes over threshold dependent random intervals. Extremes
17
411-429.

[16]
Debicki, K., Michna, Z. and Rolski, T. (2003). Simulation of the asymptotic constant in some fluid models. Stoch. Models
19
407-423.

[17]
Dieker, A. B. (2005). Extremes of Gaussian processes over an infinite horizon. Stoch. Process. Appl. 115
207-248.

[18]
Dieker, A. B. and Yakir, B. (2014). On asymptotic constants in the theory of extremes for Gaussian processes. Bernoulli
20
1600-1619.

[19]
Embrechts, P. and Maejima, M. (2002). Selfsimilar Processes. Princeton University Press.

[20]
Embrechts, P., Klüppelberg, C. and Mikosch, T. (1997). Modelling Extremal Events (Appl. Math. (New York) 33), Springer, Berlin.

[21]
Griffin, P. S. (2013). Convolution equivalent Lévy processes and first passage times. Ann. Appl. Prob. 23
1506-1543.

[22]
Griffin, P. S. and Maller, R. A. (2012). Path decomposition of ruinous behavior for a general Lévy insurance risk process. Ann. Appl. Prob. 22
1411-1449.

[23]
Hashorva, E. and Ji, L. (2014). Approximation of passage times of γ-reflected processes with FBM input.break J. Appl. Prob. 51
713-726.

[24]
Hashorva, E. and Ji, L. (2014). Extremes and first passage times of correlated fractional Brownian motions. Stoch. Models
30
272-299.

[25]
Hashorva, E. and Ji, L. (2015). Piterbarg theorems for chi-processes with trend. Extremes
18
37-64.

[26]
Hashorva, E., Ji, L. and Piterbarg, V. I. (2013). On the supremum of γ-reflected processes with fractional Brownian motion as input. Stoch. Process. Appl. 123
4111-4127.

[27]
Hüsler, J. and Piterbarg, V. (1999). Extremes of a certain class of Gaussian processes. Stoch. Process. Appl. 83
257-271.

[28]
Hüsler, J. and Piterbarg, V. (2008). A limit theorem for the time of ruin in a Gaussian ruin problem. Stoch. Process. Appl. 118
2014-2021.

[29]
Hüsler, J. and Zhang, Y. (2008). On first and last ruin times of Gaussian processes. Statist. Prob. Lett. 78
1230-1235.

[30]
Hüsler, J., Piterbarg, V. and Rumyantseva, E. (2011). Extremes of Gaussian processes with a smooth random variance. Stoch. Process. Appl. 121
2592-2605.

[31]
Klüppelberg, C. and Kühn, C. (2004). Fractional Brownian motion as a weak limit of Poisson shot noise processes—with applications to finance. Stoch. Process. Appl. 113
333-351.

[32]
Landriault, D., Renaud, J.-F. and Zhou, X. (2014). An insurance risk model with Parisian implementation delays. Methodol. Comput. Appl. Prob. 16
583-607.

[33]
Loeffen, R., Czarna, I. and Palmowski, Z. (2013). Parisian ruin probability for spectrally negative Lévy processes. Bernoulli
19
599-609.

[34]
Mandjes, M. (2007). Large Deviations for Gaussian Queues. John Wiley, Chichester.

[35]
Michna, Z. (1998). Self-similar processes in collective risk theory. J. Appl. Math. Stoch. Analysis
11
429-448.

[36]
Palmowski, Z. and Światek, P. (2014). A note on first passage probabilities of a Lévy process reflected at a general barrier. Preprint. Available at http://arxiv.org/abs/1403.1025.
[37]
Pickands, J. III (1969). Upcrossing probabilities for stationary Gaussian processes. Trans. Amer. Math. Soc. 145
51-73.

[38]
Piterbarg, V. I. (1972). On the paper by J. Pickands “Upcrossing probabilities for stationary Gaussian processes”. Vestnik Moskov. Univ. Ser. I Mat. Meh. 27
25-30.

[39]
Piterbarg, V. I. (1996). Asymptotic Methods in the Theory of Gaussian Processes and Fields (Trans. Math. Monogr. 148), American Mathematical Society, Providence, RI.