Skip to main content Accesibility Help
×
×
Home

Pathwise large deviations for the rough Bergomi model

  • Antoine Jacquier (a1), Mikko S. Pakkanen (a1) (a2) and Henry Stone (a1)
Abstract

Introduced recently in mathematical finance by Bayer et al. (2016), the rough Bergomi model has proved particularly efficient to calibrate option markets. We investigate some of its probabilistic properties, in particular proving a pathwise large deviations principle for a small-noise version of the model. The exponential function (continuous but superlinear) as well as the drift appearing in the volatility process fall beyond the scope of existing results, and a dedicated analysis is needed.

Copyright
Corresponding author
* Postal address: Department of Mathematics, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK.
** Email address: a.jacquier@imperial.ac.uk
*** Email address: m.pakkanen@imperial.ac.uk
**** Email address: henry.stone15@imperial.ac.uk
References
Hide All
[1]Adler, R. J. and Taylor, J. E. (2007). Random Fields and Geometry. Springer, New York.
[2]Aliprantis, C. D. and Border, K. C. (2006). Infinite Dimensional Analysis: A Hitchhiker’s Guide, 3rd edn. Springer, Berlin.
[3]Alòs, E., León, J. A. and Vives, J. (2007). On the short-time behavior of the implied volatility for jump-diffusion models with stochastic volatility. Finance Stoch. 11, 571589.
[4]Bajgrowicz, P., Scaillet, O. and Treccani, A. (2015). Jumps in high-frequency data: spurious detections, dynamics, and news. Manag. Sci. 62, 21982217.
[5]Bayer, C., Friz, P. and Gatheral, J. (2016). Pricing under rough volatility. Quant. Finance 16, 887904.
[6]Bayer, C. et al. (2017). Short-time near-the-money skew in rough fractional volatility models. Preprint. Available at https://arxiv.org/pdf/1703.05132.pdf.
[7]Bennedsen, M., Lunds, A. and Pakkanen, M. S. (2016). Decoupling the short- and long-term behavior of stochastic volatility. Preprint. Available at https://arxiv.org/pdf/1610.00332.pdf.
[8]Bennedsen, M., Lunds, A. and Pakkanen, M. S. (2017). Hybrid scheme for Brownian semistationary processes. Finance Stoch. 21, 931965.
[9]Biagini, F., Hu, Y.,Øksendal, B. and Zhang, T. (2008). Stochastic Calculus for Fractional Brownian Motion and Applications. Springer, London.
[10]Carmona, R. A. and Tehranchi, M. R. (2006). Interest Rate Models: An Infinite Dimensional Stochastic Analysis Perspective. Springer, Berlin.
[11]Cherny, A. (2008). Brownian moving averages have conditional full support. Ann. Appl. Prob. 18, 18251830.
[12]Christensen, K., Oomen, R. C. A. and Podolskij, M. (2014). Fact or friction: jumps at ultra high frequency. J. Financial Econom. 114, 576599.
[13]Dembo, A. and Zeitouni, O. (2010). Large Deviations Techniques and Applications. Springer, Berlin.
[14]Deuschel, J. D., Friz, P. K., Jacquier, A. and Violante, S. (2014). Marginal density expansions for diffusions and stochastic volatility I: theoretical foundations. Commun. Pure Appl. Math. 67, 4082.
[15]Deuschel, J.-D. and Stroock, D. W. (1989). Large Deviations. Academic Press, Boston.
[16]Fernique, X. (1970). Intégrabilité des vecteurs gaussiens. C. R. Acad. Sci. Paris A-B 270, A1698A1699.
[17]Figueroa-López, J. E. and Forde, M. (2012). The small-maturity smile for exponential Lévy models. SIAM J. Financial Math. 3, 3365.
[18]Forde, M. and Jacquier, A. (2009). Small-time asymptotics for implied volatility under the Heston model. Int. J. Theoret. Appl. Finance 12, 861876.
[19]Forde, M. and Zhang, H. (2017). Asymptotics for rough stochastic volatility models. SIAM J. Financial Math. 8, 114145.
[20]Friz, P. K. et al. (eds) (2015). Large Deviations and Asymptotic Methods in Finance. Springer, Cham.
[21]Fukasawa, M. (2011). Asymptotic analysis for stochastic volatility: martingale expansion. Finance Stoch. 15, 635654.
[22]Fukasawa, M. (2017). Short-time at-the-money skew and rough fractional volatility. Quant. Finance 17, 189198.
[23]Garcia, J. (2008). A large deviation principle for stochastic integrals. J. Theoret. Prob. 21, 476501.
[24]Gatheral, J., Jaisson, T. and Rosenbaum, M. (2018). Volatility is rough. Quant. Finance 18, 933949.
[25]Guillin, A. (2003). Averaging principle of SDE with small diffusion: moderate deviations. Ann. Prob. 31, 413443.
[26]Jacquier, A., Keller-Ressel, M. and Mijatović, A. (2013). Large deviations and stochastic volatility with jumps: asymptotic implied volatility for affine models. Stochastics 85, 321345.
[27]Jacquier, A., Martini, C. and Muguruza, A. (2018). On VIX futures in the rough Bergomi model. Quant. Finance 18, 4561.
[28]Jacquier, A. and Roome, P. (2015). Asymptotics of forward implied volatility. SIAM J. Financial Math. 6, 307351.
[29]Jakubowski, A., Mémin, J. and Pagès, G. (1989). Convergence en loi des suites d’intégrales stochastiques sur l’espace D1 de Skorokhod. Prob. Theory Relat. Fields 81, 111137.
[30]Kallenberg, O. (2002). Foundations of Modern Probability, 2nd edn. Springer, New York.
[31]Kurtz, T. G. and Protter, P. E. (1996). Weak convergence of stochastic integrals and differential equations. II. Infinite-dimensional case. In Probabilistic Models for Nonlinear Partial Differential Equations (Lecture Notes Math. 1627). Springer, Berlin, pp. 197285.
[32]Lévy, P. (1953). Random functions: general theory with special reference to Laplacian random functions. Univ. California Publ. Statist. 1, 331390.
[33]Mandelbrot, B. B.and Van Ness, J. W. (1968). Fractional Brownian motions, fractional noises and applications. SIAM Rev. 10, 422437.
[34]Morse, M. and Spiliopoulos, K. (2018). Importance sampling for slow-fast diffusions based on moderate deviations. Preprint. Available at https://arxiv.org/pdf/1805.10229.pdf.
[35]Olver, F. W. J. (1997). Asymptotics and Special Functions. A K Peters/CRC Press, Boca Raton, FL.
[36]Robertson, S. (2010). Sample path large deviations and optimal importance sampling for stochastic volatility models. Stoch. Process. Appl. 120, 6683.
[37]Spiliopoulos, K. (2013). Large deviations and importance sampling for systems of slow-fast motion. Appl. Math. Optimization 67, 123161.
[38]Titchmarsh, E. C. (1926). The zeros of certain integral functions. Proc. London Math. Soc. 25, 283302.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Applied Probability
  • ISSN: 0021-9002
  • EISSN: 1475-6072
  • URL: /core/journals/journal-of-applied-probability
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

MSC classification

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed