Hostname: page-component-857557d7f7-nbs69 Total loading time: 0 Render date: 2025-11-21T12:57:50.723Z Has data issue: false hasContentIssue false

Pre-averaging fractional processes contaminated by noise, with an application to turbulence

Published online by Cambridge University Press:  21 November 2025

David Chen*
Affiliation:
University of Chicago
Yu Cheng*
Affiliation:
Harvard University
Carsten H. Chong*
Affiliation:
The Hong Kong University of Science and Technology
Pierre Gentine*
Affiliation:
Columbia University
Wangdong Jia*
Affiliation:
University of California, Berkeley
Bryce J. Monier*
Affiliation:
Columbia University
Shiyang Shen*
Affiliation:
California Institute of Technology
*
*Postal address: Department of Statistics, University of Chicago, 5747 South Ellis Avenue, Chicago, IL 60637, USA. Email: davchen@uchicago.edu
**Postal address: Department of Earth and Planetary Sciences, Harvard University, 20 Oxford Street, Cambridge, MA 02138, USA. Email: yucheng1@fas.harvard.edu
***Postal address: Department of Information Systems, Business Statistics and Operations Management, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong. Email: carstenchong@ust.hk
****Postal address: Department of Earth and Environmental Engineering and Earth Institute, Columbia University, 500 West 120th Street, New York, NY 10027, USA. Email: pg2328@columbia.edu
*****Postal address: Department of Industrial Engineering and Operations Research, University of California, Berkeley, 4141 Etcheverry Hall, Berkeley, CA 94720, USA. Email: wangdong_jia@berkeley.edu
******Postal address: Columbia College, Columbia University, 1130 Amsterdam Avenue, New York, NY 10027, USA. Email: bjm2190@columbia.edu
*******Postal address: The Division of Physics, Mathematics and Astronomy, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA. Email: sshen2@caltech.edu

Abstract

We consider the problem of estimating fractional processes based on noisy high-frequency data. Generalizing the idea of pre-averaging to a fractional setting, we exhibit a sequence of consistent estimators for the unknown parameters of interest by proving a law of large numbers for associated variation functionals. In contrast to the semimartingale setting, the optimal window size for pre-averaging depends on the unknown roughness parameter of the underlying process. We evaluate the performance of our estimators in a simulation study and use them to empirically verify Kolmogorov’s $2/3$-law in turbulence data contaminated by instrument noise.

Information

Type
Original Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of Applied Probability Trust

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Aït-Sahalia, Y. and Jacod, J. (2014). High-Frequency Financial Econometrics. Princeton University Press.Google Scholar
Barndorff-Nielsen, O., Corcuera, J. and Podolskij, M. (2011). Multipower variation for Brownian semistationary processes. Bernoulli 17, 11591194.CrossRefGoogle Scholar
Barndorff-Nielsen, O. E., Hansen, P. R., Lunde, A. and Shephard, N. (2008). Designing realized kernels to measure the ex post variation of equity prices in the presence of noise. Econometrica 76, 14811536.Google Scholar
Bennedsen, M. (2020). Semiparametric estimation and inference on the fractal index of Gaussian and conditionally Gaussian time series data. Econometric Rev. 39, 875903.CrossRefGoogle Scholar
Cheng, Y., Li, Q., Argentini, S., Sayde, C. and Gentine, P. (2020). A model for turbulence spectra in the equilibrium range of the stable atmospheric boundary layer. J. Geophys. Res. Atmos. 125, e2019JD032191.Google Scholar
Cheng, Y., Sayde, C., Li, Q., Basara, J., Selker, J., Tanner, E. and Gentine, P. (2017). Failure of Taylor’s hypothesis in the atmospheric surface layer and its correction for eddy-covariance measurements. Geophys. Res. Lett. 44, 42874295.CrossRefGoogle Scholar
Chong, C. H., Delerue, T. and Li, G. (2024). When frictions are fractional: Rough noise in high-frequency data. J. Amer. Statist. Assoc. https://doi.org/10.1080/01621459.2024.2428466.Google Scholar
Chong, C., Delerue, T. and Mies, F. (2025). Rate-optimal estimation of mixed semimartingales. Ann. Statist. 53, 219244.CrossRefGoogle Scholar
Chong, C. H., Hoffmann, M., Liu, Y., Rosenbaum, M. and Szymanski, G. (2024). Statistical inference for rough volatility: Central limit theorems. Ann. Appl. Prob. 34, 26002649.CrossRefGoogle Scholar
Chong, C. H., Hoffmann, M., Liu, Y., Rosenbaum, M. and Szymansky, G. (2024). Statistical inference for rough volatility: Minimax theory. Ann. Statist. 52, 12771306.CrossRefGoogle Scholar
Corcuera, J. M., Hedevang, E., Pakkanen, M. S. and Podolskij, M. (2013). Asymptotic theory for Brownian semi-stationary processes with application to turbulence. Stoch. Process. Appl. 123, 25522574.CrossRefGoogle Scholar
Dhruva, B. R. (2000). An experimental study of high Reynolds number turbulence in the atmosphere. PhD thesis, Yale University.Google Scholar
Dilling, S. and MacVicar, B. (2017). Cleaning high-frequency velocity profile data with autoregressive moving average (ARMA) models. Flow Meas. Instrum. 54, 6881.CrossRefGoogle Scholar
Durgesh, V., Thomson, J., Richmond, M. C. and Polagye, B. L. (2014). Noise correction of turbulent spectra obtained from acoustic doppler velocimeters. Flow Meas. Instrum. 37, 2941.CrossRefGoogle Scholar
Frisch, U. (1995). Turbulence. Cambridge University Press.CrossRefGoogle Scholar
Gloter, A. and Hoffmann, M. (2007). Estimation of the Hurst parameter from discrete noisy data. Ann. Statist. 35, 19471974.CrossRefGoogle Scholar
Hu, G. Y. and O’Connell, R. F. (1996). Analytical inversion of symmetric tridiagonal matrices. J. Phys. A 29, 15111513.CrossRefGoogle Scholar
Jacod, J., Li, Y., Mykland, P. A., Podolskij, M. and Vetter, M. (2009). Microstructure noise in the continuous case: The pre-averaging approach. Stoch. Process. Appl. 119, 22492276.CrossRefGoogle Scholar
Jacod, J. and Protter, P. (2012). Discretization of Processes (Stochastic Modelling and Applied Probability 67). Springer, Heidelberg.CrossRefGoogle Scholar
Kolmogoroff, A. (1941). The local structure of turbulence in incompressible viscous fluid for very large Reynold’s numbers. C. R. (Doklady) Acad. Sci. URSS (N.S.) 30, 301305.Google Scholar
Podolskij, M. and Vetter, M. (2009). Estimation of volatility functionals in the simultaneous presence of microstructure noise and jumps. Bernoulli 15, 634658.CrossRefGoogle Scholar
Roy, S., Miller, J. D. and Gunaratne, G. H. (2021). Deviations from Taylor’s frozen hypothesis and scaling laws in inhomogeneous jet flows. Commun. Phys. 4, 32.CrossRefGoogle Scholar
Szymanski, G. (2024). Optimal estimation of the rough Hurst parameter in additive noise. Stoch. Process. Appl. 170, 104302.CrossRefGoogle Scholar
Szymanski, G. and Takabatake, T. (2023). Asymptotic efficiency for fractional Brownian motion with general noise. Preprint, arXiv:2311.18669.Google Scholar
Taylor, G. I. (1938). The spectrum of turbulence. Proc. R. Soc. London A 164, 476490.CrossRefGoogle Scholar
Zhang, L., Mykland, P. A. and At-Sahalia, Y. (2005). A tale of two time scales: Determining integrated volatility with noisy high-frequency data. J. Amer. Statist. Assoc. 100, 13941411.CrossRefGoogle Scholar