Skip to main content

A quantum-mechanical central limit theorem for anti-commuting observables

  • R. L. Hudson (a1)

A quantum-mechanical central limit theorem for sums of pairwise anti-commuting representations of the canonical anti-commutation relations over a finite-dimensional space is formulated and proved.

Hide All
[1] Araki, H. (1969) Factorizable representation of current algebra. Publ. Res. Inst. Math. Sci. (Kyoto) 5, 361422.
[2] Brauer, R. and Weyl, H. (1935) Spinors in n dimensions. Amer. J. Math. 57, 425449.
[3] Cushen, C. D. and Hudson, R. L. (1971) A quantum mechanical central limit theorem. J. Appl. Prob. 8, 454469.
[4] Mathon, D. and Streater, R. F. (1971) Infinitely divisible representations of Clifford algebras. Z. Wahrscheinlichkeitsth. 20, 308316.
[5] Von Neumann, J. (1935) On infinite direct products. Compositio Math. 6, 177.
[6] Powers, R. T. (1967) Representations of the canonical anticommutation relations. , Princeton.
[7] Streater, R. F. (1971) Infinitely divisible representations of Lie algebras. Z. Wahrscheinlichkeitsth. 19, 6780.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Applied Probability
  • ISSN: 0021-9002
  • EISSN: 1475-6072
  • URL: /core/journals/journal-of-applied-probability
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 0
Total number of PDF views: 6 *
Loading metrics...

Abstract views

Total abstract views: 53 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 22nd March 2018. This data will be updated every 24 hours.