[1]
Besag, J. (1974). Spatial interaction and the statistical analysis of lattice systems. J. R. Statist. Soc. B
36, 192–236.

[2]
Chernoff, H. (1952). A measure of asymptotic efficiency for tests of a hypothesis based on the sum of observations. Ann. Math. Statist.
23, 493–507.

[3]
Dyer, M. and Frieze, A. (1991). Computing the volume of convex bodies: a case where randomness provably helps. In Probabilistic Combinatorics and Its Applications (Proc. Symp. Appl. Math. 44), American Mathematical Society, Providence, RI, pp. 123–169.

[4]
Fishman, G. S. (1994). Choosing sample path length and number of sample paths when starting in steady state. Operat. Res. Lett.
16, 209–219.

[5]
Geyer, C. J. (1991). Markov chain Monte Carlo maximum likelihood. In Computing Science and Statistics: Proceedings of the 23rd Symposium on the Interface, pp. 156–163.

[7]
Huber, M. and Schott, S. (2011). Using T{P}{A} for Bayesian inference. In Bayesian Statistics 9 (Proc. 9th Valencia Internat. Meeting), Oxford University Press, pp. 257–282.

[8]
Huber, M. L. and Wolpert, R. L. (2009). Likelihood-based inference for Matérn type-{III} repulsive point processes. Adv. Appl. Prob.
41, 958–977.

[9]
Jerrum, M. R., Valiant, L. G. and Vazirani, V. V. (1986). Random generation of combinatorial structures from a uniform distribution. Theoret. Comput. Sci.
43, 169–188.

[10]
Karatzas, I. and Shreve, S. E. (1991). Brownian Motion and Stochastic Calculus, 2nd edn.
Springer, New York.

[11]
Kirkpatrick, S., Gelatt, C. D. Jr. and Vecchi, M. P. (1983). Optimization by simulated annealing. Science
220, 671–680.

[12]
Marinari, E. and Parisi, G. (1992). Simulated tempering: a new Monte Carlo scheme. Europhys. Lett.
19, 451–458.

[13]
Motwani, R. and Raghavan, P. (1995). Randomized Algorithms. Cambridge University Press.

[14]
Murray, I., Ghahramani, Z. and MacKay, D. J. C. (2006). MCMC for doubly-intractable distributions. In Proc. 22nd Annual Conf. Uncertainty Artificial Intelligence, AUAI Press, pp. 359–366.

[15]
Propp, J. G. and Wilson, D. B. (1996). Exact sampling with coupled Markov chains and applications to statistical mechanics. Random Structures Algorithms
9, 223–252.

[16]
Robert, C. P. and Casella, G. (2004). Monte Carlo Statistical Methods, 2nd edn.
Springer, New York.

[17]
Shonkwiler, R. W. and Mendivil, F. (2009). Expolorations in Monte Carlo Methods. Springer, New York.

[18]
Skilling, J. (2006). Nested sampling for general Bayesian computation. Bayesian Analysis
1, 833–859.

[19]
ŠtefankoviČ, D., Vempala, S. and Vigoda, E. (2009). Adaptive simulated annealing: a near-optimal connection between sampling and counting. J. ACM
56, 36pp.

[20]
Swendsen, R. H. and Wang, J.-S. (1986). Replica Monte Carlo simulation of spin-glasses. Phys. Rev. Lett.
57, 2607–2609.

[21]
Valleau, J. P. and Card, D. N. (1972). Monte Carlo estimation of the free energy by multistage sampling. J. Chem. Phys.
57, 5457–5462.

[22]
Woodward, D. B., Schmidler, S. C. and Huber, M. (2009). Conditions for rapid mixing of parallel and simulated tempering on multimodal distributions. Ann. Appl. Prob.
19, 617–640.

[23]
Woodward, D. B., Schmidler, S. C. and Huber, M. (2009). Sufficient conditions for torpid mixing of parallel and simulated tempering. Electron. J. Prob.
14, 780–804.