Hostname: page-component-76fb5796d-45l2p Total loading time: 0 Render date: 2024-04-28T06:29:11.070Z Has data issue: false hasContentIssue false

Reflection principle for finite-velocity random motions

Published online by Cambridge University Press:  15 December 2022

Fabrizio Cinque*
Affiliation:
Sapienza University of Rome
*
*Postal address: Department of Statistical Sciences, Sapienza University of Rome, Italy. Email address: fabrizio.cinque@uniroma1.it

Abstract

We present a reflection principle for a wide class of symmetric random motions with finite velocities. We propose a deterministic argument which is then applied to trajectories of stochastic processes. In the case of symmetric correlated random walks and the symmetric telegraph process, we provide a probabilistic result recalling the classical reflection principle for Brownian motion, but where the initial velocity has a crucial role. In the case of the telegraph process we also present some consequences which lead to further reflection-type characteristics of the motion.

Type
Original Article
Copyright
© The Author(s), 2022. Published by Cambridge University Press on behalf of Applied Probability Trust

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bachelier, L. (1901). Théorie mathématique du jue. Ann. Sci. Éc. Norm. Supér. (4) 18, 143201.CrossRefGoogle Scholar
Bayraktar, E. and Nadtochiy, S. (2015). Weak reflection principle for Lévy processes. Ann. Appl. Prob. 25, 32513294.CrossRefGoogle Scholar
Beghin, L., Nieddu, L. and Orsingher, E. (2001). Probabilistic analysis of the telegrapher’s process with drift by means of relativistic transformations. J. Appl. Math. Stoch. Anal. 92, 1125.CrossRefGoogle Scholar
Chen, A. and Renshaw, E. (1994). The general correlated random walk. J. Appl. Prob. 31, 869884.CrossRefGoogle Scholar
Cinque, F. (2020). The negative reflection principle and the joint distribution of the telegraph process and its maximum. Available at arXiv:2011.00342.Google Scholar
Cinque, F. and Orsingher, E. (2020). On the distribution of the maximum of the telegraph process. Theory Prob. Math. Statist. 102, 7395.CrossRefGoogle Scholar
Cinque, F. and Orsingher, E. (2021). On the exact distribution of the maximum of the asymmetric telegraph process. Stoch. Process. Appl. 142, 601633.CrossRefGoogle Scholar
Cinque, F. and Orsingher, E. (2021). Stochastic dynamics of generalized planar random motions with orthogonal directions. Available at arXiv:2108.10027.Google Scholar
De Bruyne, B., Majumdar, S. N. and Schehr, G. (2021). Survival probability of a run-and-tumble particle in the presence of a drift. J. Statist. Mech. Theory Exp. 4, 043211.CrossRefGoogle Scholar
Gregorio, De (2010). Stochastic velocity motions and processes with random time. Adv. Appl. Prob. 42, 10281056.CrossRefGoogle Scholar
De Gregorio, A., Orsingher, E. and Sakhno, L. (2005). Motions with finite velocity analyzed with order statistics and differential equations. Theory Prob. Math. Statist. 71, 6379.CrossRefGoogle Scholar
Di Crescenzo, A. (2001). On random motions with velocities alternating at Erlang-distributed random times. Adv. Appl. Prob. 33, 690701.CrossRefGoogle Scholar
Di Crescenzo, A., Iuliano, A., Martinucci, B. and Zacks, S. (2013). Generalized telegraph process with random jumps. J. Appl. Prob. 50, 450463.CrossRefGoogle Scholar
Di Masi, G., Kabanov, Y. and Runggaldier, W. (1994). Mean-variance hedging of options on stocks with Markov volatilities. Theory Prob. Appl. 39, 211222.Google Scholar
Domb, C. and Fisher, M. E. (1958). On the random walks with restricted reversals. Proc. Camb. Phil. Soc. 54, 4859.CrossRefGoogle Scholar
Flory, P. J. (1962). Principles of Polymer Chemistry. Cornell University Press, Ithaca, NY.Google Scholar
Foong, S. K. (1992). First passage time, maximum displacement and Kac’s solution of the telegrapher equation. Phys. Rev. A46, R707R710.CrossRefGoogle Scholar
Foong, S. K. and Kanno, S. (1994). Properties of the telegrapher’s random process with or without a trap. Stoch. Process. Appl. 53, 147173.CrossRefGoogle Scholar
Gillis, J. (1955). Correlated random walk. Proc. Camb. Phil. Soc. 51, 639651.CrossRefGoogle Scholar
Goldstein, S. (1951). On diffiusion by discontinuous movements and the telegraph equation. Quart. J. Mech. Appl. Math. 4, 129156.CrossRefGoogle Scholar
Guo, X., de Lerrard, A. and Ruan, Z. (2017). Optimal placement in a limit order book: an analytical approach. Math. Financ. Econ. 11, 189213.CrossRefGoogle Scholar
Holmes, E. E., Lewis, M. A., Banks, J. E. and Veit, R. R. (1994). Partial differential equations in ecology: spatial interactions and population dynamics. Ecology 75, 1729.CrossRefGoogle Scholar
Ida, Y., Kinoshita, T. and Matsumoto, T. (2018). Symmetrization associated with hyperbolic reflection principle. Pacific J. Math. Industry 10, 1.CrossRefGoogle Scholar
Jain, G. C. (1973). On the expected number of visits of a particle before absorption in a correlated random walk. Canad. Math. Bull. 16, 389395.CrossRefGoogle Scholar
Jakeman, E. and Renshaw, E. (1987). Correlated random walk model for scattering. J. Opt. Soc. Amer. A4, 12061212.CrossRefGoogle Scholar
Kac, M. (1974). A stochastic model related to the telegrapher’s equation. Rocky Mountain J. Math. 4, 497509.CrossRefGoogle Scholar
Kolesnik, A. D. (2021). Markov Random Flights. Chapman and Hall.CrossRefGoogle Scholar
Kolesnik, A. D. and Orsingher, E. (2005). A planar random motion with an infinite number of directions controlled by the damped wave equation. J. Appl. Prob. 42, 11681182.CrossRefGoogle Scholar
Kolesnik, A. D. and Ratanov, N. (2013). Telegraph Processes and Option Pricing. Springer, Heidelberg.CrossRefGoogle Scholar
Lévy, P. (1940). Sur certains processus stochastiques homogènes. Compositio Math. 7, 283339.Google Scholar
Lopez, O. and Ratanov, N. (2014). On the asymmetric telegraph processes. J. Appl. Prob. 51, 569589.CrossRefGoogle Scholar
Malakar, K., Jemseena, V., Kundu, A., Kumar, K. V., Sabhapandit, S., Majumdar, S. N., Redner, S. and Dhar, A. (2018). Steady-state, relaxation and first-passage properties of a run-and-tumble particle in one-dimension. J. Statist. Mech. 2018, 043215.CrossRefGoogle Scholar
Mertens, K., Angelani, L., Di Leonardo, R. and Bocquet, L. (2012). Probability distributions for the run-and-tumble bacterial dynamics: an analogy to the Lorentz model. European Phys. J. 35, 84.Google Scholar
Orsingher, E. (1990). Probability law, flow function, maximum distribution of wave-governed random motions and their connections with Kirchoff’s laws. Stoch. Process. Appl. 34, 4966.CrossRefGoogle Scholar
Orsingher, E. and De Gregorio, A. (2007). Random flights in higher spaces. J. Theoret. Prob. 20, 769806.CrossRefGoogle Scholar
Orsingher, E. and Kolesnik, A. D. (1996). Exact distribution for a planar random motion model controlled by a fourth-order hyperbolic equation. Theory Prob. Appl. 41, 379386.Google Scholar
Orsingher, E., Garra, R. and Zeifman, A. I. (2020). Cyclic random motions with orthogonal directions. Markov Process. Relat. Fields. 26, 381402.Google Scholar
Ratanov, N. (2007). A jump telegraph model for option pricing. Quant. Finance 7, 575583.CrossRefGoogle Scholar
Ratanov, N. (2021). On telegraph processes, their first passage times and running extrema. Statist. Prob. Lett. 174, 109101.CrossRefGoogle Scholar
Renshaw, E. (1991). Modelling Biological Populations in Space and Time. Cambridge University Press.CrossRefGoogle Scholar
Renshaw, E. and Henderson, R. (1981). The correlated random walk. J. Appl. Prob. 18, 403414.CrossRefGoogle Scholar
Skellam, J. G. (1973). The formulation and interpretation of mathematical models of diffusionary processes in population biology. In The Mathematical Theory of the Dynamics of Biological Populations, eds M. S. Bartlett and R. W. Hiorns, pp. 63–85. Academic Press, London.Google Scholar
Stadje, W. and Zacks, S. (2004). Telegraph processes with random velocities. J. Appl. Prob. 41, 665678.CrossRefGoogle Scholar
Zhang, Y. L. (1992). Some problems on a one-dimensional correlated random walk with various type of barriers. J. Appl. Prob. 29, 196201.CrossRefGoogle Scholar