Hostname: page-component-76fb5796d-skm99 Total loading time: 0 Render date: 2024-04-28T02:12:32.165Z Has data issue: false hasContentIssue false

With or without replacement? Sampling uncertainty in Shepp’s urn scheme

Published online by Cambridge University Press:  22 December 2022

Kristoffer Glover*
Affiliation:
University of Technology Sydney
*
*Postal address: UTS Business School, 14–28 Ultimo Road, NSW 2007, Australia. Email address: kristoffer.glover@uts.edu.au

Abstract

We introduce a variant of Shepp’s classical urn problem in which the optimal stopper does not know whether sampling from the urn is done with or without replacement. By considering the problem’s continuous-time analog, we provide bounds on the value function and, in the case of a balanced urn (with an equal number of each ball type), an explicit solution is found. Surprisingly, the optimal strategy for the balanced urn is the same as in the classical urn problem. However, the expected value upon stopping is lower due to the additional uncertainty present.

Type
Original Article
Copyright
© The Author(s), 2022. Published by Cambridge University Press on behalf of Applied Probability Trust

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Avellandeda, M. and Lipkin, M. (2003). A market-induced mechanism for stock pinning. Quant. Finance 3, 417425.CrossRefGoogle Scholar
Baurdoux, E. J., Chen, N., Surya, B. A. and Yamazaki, K. (2015). Optimal double stopping of a Brownian bridge. Adv. Appl. Prob. 47, 12121234.CrossRefGoogle Scholar
Boyce, W. (1973). On a simple optimal stopping problem. Discrete Math. 5, 297312.CrossRefGoogle Scholar
Breiman, L. (1964). Stopping rule problems. In Applied Combinatorial Mathematics, ed E. F. Beckenbach. Wiley, New York, pp. 284319.Google Scholar
Brennan, M. J. and Schwartz, E. S. (1990). Arbitrage in stock index futures. J. Business 63, 731.CrossRefGoogle Scholar
Chen, R. W., Grigorescu, I. and Kang, W. (2015). Optimal stopping for Shepp’s urn with risk aversion. Stochastics 84, 702722.CrossRefGoogle Scholar
Chen, R. W., Zame, A., Lin, C. T. and Wu, H. (2005). A random version of Shepp’s urn scheme. SIAM J. Discrete Math. 19, 149164.CrossRefGoogle Scholar
Chow, Y. S. and Robbins, H. (1965). On optimal stopping rules for $S_n/n$ . Illinois J. Math. 9, 444454.CrossRefGoogle Scholar
Cryer, C. (1971). The solution of a quadratic programming problem using systematic overrelaxation. SIAM J. Control 9, 385392.CrossRefGoogle Scholar
De Angelis, T. and Milazzo, A. (2020). Optimal stopping for the exponential of a Brownian bridge. J. Appl. Prob. 57, 361384.CrossRefGoogle Scholar
Dehghanian, A. and Kharoufeh, J. P. (2019). Optimal stopping with a capacity constraint: Generalizing Shepp’s urn scheme. Operat. Res. Lett. 47, 311316.CrossRefGoogle Scholar
Donsker, M. D. (1951). An invariance principle for certain probability limit theorems. Mem. Amer. Math. Soc. 5, 4355.Google Scholar
Durbin, J. and Williams, D. (1992). The first-passage density of the Brownian motion process to a curved boundary. J. Appl. Prob. 29, 291304.CrossRefGoogle Scholar
Dvoretzky, A. (1967). Existence and properties of certain optimal stopping rules. In Proc. Fifth Berkeley Symp. Math. Statist. Prob., Vol. 1. University of California Press, Berkeley, CA, pp. 441452.Google Scholar
Ekström, E. and Lu, B. (2011) Optimal selling of an asset under incomplete information. Int. J. Stoch. Anal., 543590.Google Scholar
Ekström, E. and Vaicenavicius, J. (2016). Optimal liquidation of an asset under drift uncertainty. SIAM J. Financial Math. 7, 357381.CrossRefGoogle Scholar
Ekström, E. and Vaicenavicius, J. (2020). Optimal stopping of a Brownian bridge with unknown pinning point. Stoch. Process. Appl. 130, 806823.CrossRefGoogle Scholar
Ekström, E. and Vannestål, M. (2019). American options with incomplete information. Internat. J. Theor. Appl. Finance 22, 1950035.CrossRefGoogle Scholar
Ekström, E. and Wanntorp, H. (2009). Optimal stopping of a Brownian bridge. J. Appl. Prob. 46, 170180.CrossRefGoogle Scholar
Ernst, P. A. and Shepp, L. A. (2015). Revisiting a theorem of L. A. Shepp on optimal stopping. Commun. Stoch. Anal. 9, 419423.Google Scholar
Föllmer, H. (1972). Optimal stopping of constrained Brownian motion. J. Appl. Prob. 9, 557571.CrossRefGoogle Scholar
Gapeev, P. (2012). Pricing of perpetual American options in a model with partial information. Internat. J. Theor. Appl. Finance 15, 122.CrossRefGoogle Scholar
Glover, K. (2022). Optimally stopping a Brownian bridge with an unknown pinning time: A Bayesian approach. Stoch. Process. Appl. 150, 919937.CrossRefGoogle Scholar
Herrmann, S. and Tanré, E. (2016). The first-passage time of the Brownian motion to a curved boundary: An algorithmic approach. SIAM J. Sci. Comput. 38, A196A215.CrossRefGoogle Scholar
Hung, Y.-C. (2009). A note on randomized Shepp’s urn scheme. Discrete Math. 309, 17491759.CrossRefGoogle Scholar
Johnson, P. and Peskir, G. (2017). Quickest detection problems for Bessel processes. Ann. Appl. Prob. 27, 10031056.CrossRefGoogle Scholar
Johnson, P. and Peskir, G. (2018). Sequential testing problems for Bessel processes. Trans. Amer. Math. Soc. 370, 20852113.CrossRefGoogle Scholar
Liptser, R. S. and Shiryaev, A. N. (2001). Statistics of Random Processes I: General Theory, 2nd edn (Appl. Math. 5). Springer, New York.Google Scholar
Liu, J. and Longstaff, F. A. (2004). Losing money on arbitrage: Optimal dynamic portfolio choice in markets with arbitrage opportunities. Rev. Financial Studies 17, 611641.CrossRefGoogle Scholar
Øksendal, B. (2004). Stochastic Differential Equations: An Introduction with Applications, 6th edn. Springer, New York.Google Scholar
Peskir, G. and Shiryaev, A. N. (2006). Optimal Stopping and Free-Boundary Problems (Lect. Math. ETH Zürich). Birkhäuser, Basel.Google Scholar
Shepp, L. A. (1969). Explicit solutions to some problems of optimal stopping. Ann. Math. Statist. 40, 9931010.CrossRefGoogle Scholar
Zhu, Y.-L., Wu, X., Chern, I.-L. and Sun, Z.-Z. (2004). Derivative Securities and Difference Methods. Springer, New York.CrossRefGoogle Scholar