Skip to main content Accessibility help
×
Home
Hostname: page-component-99c86f546-cxxrm Total loading time: 0.241 Render date: 2021-12-01T11:10:32.928Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

The ecology of prelinguistic vocal learning: parents simplify the structure of their speech in response to babbling

Published online by Cambridge University Press:  16 July 2019

Steven L. ELMLINGER
Affiliation:
Department of Psychology, Cornell University, USA
Jennifer A. SCHWADE
Affiliation:
Department of Psychology, Cornell University, USA
Michael H. GOLDSTEIN*
Affiliation:
Department of Psychology, Cornell University, USA
*
*Corresponding author: E-mail: mhg26@cornell.edu

Abstract

What is the function of babbling in language learning? We examined the structure of parental speech as a function of contingency on infants’ non-cry prelinguistic vocalizations. We analyzed several acoustic and linguistic measures of caregivers’ speech. Contingent speech was less lexically diverse and shorter in utterance length than non-contingent speech. We also found that the lexical diversity of contingent parental speech only predicted infant vocal maturity. These findings illustrate a new form of influence infants have over their ambient language in everyday learning environments. By vocalizing, infants catalyze the production of simplified, more easily learnable language from caregivers.

Type
Brief Research Reports
Copyright
Copyright © Cambridge University Press 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abney, D. H., Warlaumont, A. S., Oller, D. K., Wallot, S., & Kello, C. T. (2016). Multiple coordination patterns in infant and adult vocalizations. Infancy, 22(4), 514–39.CrossRefGoogle ScholarPubMed
Albert, R. R., Schwade, J. A., & Goldstein, M. H. (2017). The social functions of babbling: acoustic and contextual characteristics that facilitate maternal responsiveness. Developmental Science, 18, e12641.Google Scholar
Bates, D., Maechler, M., Bolker, B., & Walker, S. (2015). Fitting linear mixed-effects models using lme4. Journal of Statistical Software, 67(1), 148.CrossRefGoogle Scholar
Boersma, P., & Weenink, D. (2015). Praat: Doing phonetics by computer. retrieved from <http://www.praat.org>..>Google Scholar
Brent, M. R., & Siskind, J. M. (2001). The role of exposure to isolated words in early vocabulary development. Cognition, 81(2), B33B44.CrossRefGoogle ScholarPubMed
Cameron-Faulkner, T., Lieven, E., & Tomasello, M. (2003). A construction based analysis of child directed speech. Cognitive Science, 27(6), 843–73.CrossRefGoogle Scholar
Depue, R. A., & Morrone-Strupinsky, J. V. (2005). A neurobehavioral model of affiliative bonding: implications for conceptualizing a human trait of affiliation. Behavioral and Brain Sciences, 28, 313–50.CrossRefGoogle ScholarPubMed
Fernald, A., & Morikawa, H. (1993). Common themes and cultural variation in Japanese and American mothers’ speech to infants. Child Development, 64, 637–56.CrossRefGoogle ScholarPubMed
Fernald, A., & Simon, T. (1984). Expanded intonation contours in mothers’ speech to newborns. Developmental Psychology, 20, 104–13.CrossRefGoogle Scholar
Goldstein, M. H., King, A. P., & West, M. J. (2003). Social interaction shapes babbling: testing parallels between birdsong and speech. Proceedings of the National Academy of Science, 100(13), 8030–5.CrossRefGoogle ScholarPubMed
Goldstein, M. H., & Schwade, J. A. (2008). Social feedback to infants’ babbling facilitates rapid phonological learning. Psychological Science, 19(5), 515–23.CrossRefGoogle ScholarPubMed
Goldstein, M. H., & Schwade, J. (2010) From birds to words: perception of structure in social interactions guides vocal development and language learning. In Blumberg, M. S., Freeman, J. H., & Robinson, S. R. (Eds.), The Oxford handbook of developmental behavioral neuroscience (pp. 708–29). Oxford University Press.Google Scholar
Goldstein, M. H., Schwade, J. A., & Bornstein, M. H. (2009). The value of vocalizing: five-month-old infants associate their own noncry vocalizations with responses from caregivers. Child Development, 80(3), 636–44.CrossRefGoogle ScholarPubMed
Goldstein, M. H., Schwade, J., Briesch, J., & Syal, S. (2010a). Learning while babbling: prelinguistic object-directed vocalizations indicate a readiness to learn. Infancy, 15(4), 362–91.CrossRefGoogle Scholar
Goldstein, M. H., Waterfall, H. R., Lotem, A., Halpern, J. Y., Schwade, J. A., Onnis, L., & Edelman, S. (2010b). General cognitive principles for learning structure in time and space. Trends in Cognitive Sciences, 14(6), 249–58.CrossRefGoogle Scholar
Gultekin, Y. B., & Hage, S. R. (2018). Limiting parental interaction during vocal development affects acoustic call structure in marmoset monkeys. Science Advances, 4, eaar4012.CrossRefGoogle ScholarPubMed
Holmgren, K., Lindblom, B., Aurelius, G., Jalling, B., & Zetterström, R. (1986). On the phonetics of infant vocalization. In Lindblom, B. & Zetterström, R. (Eds.), Precursors of early speech (pp. 5163) (Wenner-Gren Center International Symposium Series). London: Palgrave Macmillan.CrossRefGoogle Scholar
Huttenlocher, J., Waterfall, H., Vasilyeva, M., Vevea, J., & Hedges, L. V. (2010). Sources of variability in children's language growth. Cognitive Psychology, 61(4), 343–65.CrossRefGoogle ScholarPubMed
Kareev, Y. (1995) Through a narrow window: working memory capacity and the detection of covariation. Cognition, 56, 263–9.CrossRefGoogle ScholarPubMed
Kidd, C., & Hayden, B. Y. (2015). The psychology and neuroscience of curiosity. Neuron, 88(3), 449–60.CrossRefGoogle Scholar
Kidd, C., Piantadosi, S. T., & Aslin, R. N. (2014). The Goldilocks effect in infant auditory attention. Child Development, 85, 1795–804.Google ScholarPubMed
King, A. P., West, M. J., & Goldstein, M. H. (2005). Non-vocal shaping of avian song development: parallels to human speech development. Ethology, 111(1), 101–17.CrossRefGoogle Scholar
Kuhl, P. K., Tsao, F.-M., & Lui, H.-M. (2003). Foreign-language experience in infancy: effects of short-term exposure and social interaction on phonetic learning. Proceedings of the National Academy of Science, 100, 9096–101.CrossRefGoogle ScholarPubMed
Leffel, K., & Suskind, D. (2013). Parent-directed approaches to enrich the early language environments of children living in poverty. Seminars in Speech and Language, 34, 267–78.Google ScholarPubMed
Lew-Williams, C., Pelucchi, B., & Saffran, J. R. (2011). Isolated words enhance statistical language learning in infancy. Developmental Science, 14, 1323–9.CrossRefGoogle ScholarPubMed
Mattys, S. L., Jusczyk, P. W., Luce, P. A., & Morgan, J. L. (1999). Phonotactic and prosodic effects on word segmentation in infants. Cognitive Psychology, 38(4), 465–94.CrossRefGoogle ScholarPubMed
Moulin-Frier, C., Nguyen, S. M., & Oudeyer, P.-Y. (2014). Self-organization of early vocal development in infants and machines: the role of intrinsic motivation. Frontiers in Psychology, 4, 120. doi:10.3389/fpsyg.2013.01006CrossRefGoogle ScholarPubMed
Newman, R. S., Rowe, M. L., & Ratner, N. B. (2016). Input and uptake at 7 months predicts toddler vocabulary: the role of child-directed speech and infant processing skills in language development. Journal of Child Language, 43, 1158–73.CrossRefGoogle ScholarPubMed
Newport, E. L., Gleitman, H., & Gleitman, L. R. (1977). Mother, I'd rather do it myself: some effects and non-effects of maternal speech style. In Snow, C. E. & Ferguson, C. A. (Eds.), Talking to Children: language input and acquisition (pp. 109–49). Cambridge University Press.Google Scholar
Oller, D. K. (2000). The emergence of the speech capacity. Mahwah, NJ: Lawrence Erlbaum and Associates.CrossRefGoogle Scholar
Oller, D. K., Eilers, R. E., & Basinger, D. (2001). Intuitive identification of infant vocal sounds by parents. Developmental Science, 4, 4960.CrossRefGoogle Scholar
Oller, D. K., & Lynch, M. P. (1992). Infant vocalizations and innovations in infraphonology: toward a broader theory of development and disorders. In Ferguson, C. A., Menn, L., & Stoel-Gammon, C. (Eds.), Phonological development: models, research, implications (pp. 509536). Timonium, MD: York Press.Google Scholar
Parker, M. D., & Brorson, K. (2005). A comparative study between mean length of utterance in morphemes (MLUm) and mean length of utterance in words (MLUw). First Language, 25(3), 365–76.CrossRefGoogle Scholar
R Core Team (2018). R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing. Online <https://www.R-project.org/>..>Google Scholar
Ramírez-Esparza, N., García-Sierra, A., & Kuhl, P. K. (2017). The impact of early social interactions on later language development in Spanish–English bilingual infants. Child Development, 88(4), 1216–34.CrossRefGoogle ScholarPubMed
Romeo, R. R., Leonard, J. A., Robinson, S. T., West, M. R., Mackey, A. P., Rowe, M. L., & Gabrieli, J. D. (2018). Beyond the 30-million-word gap: children's conversational exposure is associated with language-related brain function. Psychological Science, 29(5), 700–10. Online <https://dspace.mit.edu/handle/1721.1/66701?show=full>.CrossRefGoogle ScholarPubMed
Roy, B. C., Frank, M. C., & Roy, D. K. (2009). Exploring word learning in a high-density longitudinal corpus. Proceedings of Cognitive Science Society, 17.Google Scholar
Saffran, J. R., Aslin, R. N., & Newport, E. L. (1996). Statistical learning by 8-month-old infants. Science, 274, 1926–8.CrossRefGoogle ScholarPubMed
Smith, L. B., Suanda, S. H., & Yu, C. (2014). The unrealized promise of infant statistical word–referent learning. Trends in Cognitive Sciences, 18(5), 251–8.CrossRefGoogle ScholarPubMed
Smith, N. A., & Trainor, L. J. (2008). Infant-directed speech is modulated by infant feedback. Infancy, 13, 410–20.CrossRefGoogle Scholar
Snow, C. E. (1977). Mothers’ speech research: from input to interaction In Snow, C. E. & Ferguson, C. A. (Eds.), Talking to children: language input and acquisition (pp. 3149). Cambridge University Press.Google Scholar
Snow, C. E. (1995). Issues in the study of input: finetuning, universality, individual and developmental differences, and necessary causes. In Fletcher, P. & MacWhinney, B. (Eds.), The handbook of child language (pp. 180–93). Oxford: Blackwell.Google Scholar
Stern, D. N., Spieker, S., Barnett, R. K., & MacKain, K. (1983). The prosody of maternal speech: infant age and context related changes. Journal of Child Language, 10, 115.CrossRefGoogle ScholarPubMed
Stoel-Gammon, C. (1989). Prespeech and early speech development of two late talkers. First Language, 9, 207–24.CrossRefGoogle Scholar
Syal, S., & Finlay, B. L. (2010). Thinking outside the cortex: social motivation in the evolution and development of language. Developmental Science, 14(2), 417–30.CrossRefGoogle Scholar
Takahashi, D. Y., Fenley, A. R., Teramoto, Y., Narayanan, D. Z., Borjon, J. I., Holmes, P., & Ghazanfar, A. A. (2015). The developmental dynamics of marmoset monkey vocal production. Science, 349(6249), 734–8.CrossRefGoogle ScholarPubMed
Tamis-LeMonda, C. S., Bornstein, M. H., & Baumwell, L. (2001). Maternal responsiveness and children's achievement of language milestones, Child Development, 72, 748–67.CrossRefGoogle ScholarPubMed
Theofanopoulou, C., Boeckx, C., & Jarvis, E. D. (2017), A hypothesis on a role of oxytocin in the social mechanisms of speech and vocal learning. Proceedings of the Royal Society B: Biological Sciences, 284(1861). doi:10.1098/rspb.2017.0988.CrossRefGoogle ScholarPubMed
Thiessen, E. D., Hill, E. A., & Saffran, J. R. (2005). Infant-directed speech facilitates word segmentation. Infancy, 7(1), 5371.CrossRefGoogle Scholar
Venker, C. E., Bolt, D. M., Meyer, A., Sindberg, H., Weismer, S. E., & Tager-Flusberg, H. (2015). Parent telegraphic speech use and spoken language in preschoolers with ASD. Journal of Speech, Language, and Hearing Research, 58(6), 1733–46.CrossRefGoogle ScholarPubMed
Vukatana, E., Graham, S. A., Curtin, S., & Zepeda, M. S. (2015). One is not enough: multiple exemplars facilitate infants’ generalizations of novel properties. Infancy, 20(5), 548–75.CrossRefGoogle Scholar
Warlaumont, A. S., Richards, J. A., Gilkerson, J., & Oller, D. K. (2014). A social feedback loop for speech development and its reduction in autism. Psychological Science, 25(7), 1314–24.CrossRefGoogle ScholarPubMed
Weisberg, D. S., Zosh, J. M., Hirsh-Pasek, K., & Golinkoff, R. M. (2013). Talking it up: play, language, and the role of adult support. American Journal of Play, 6(1), 3954.Google Scholar
16
Cited by

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

The ecology of prelinguistic vocal learning: parents simplify the structure of their speech in response to babbling
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

The ecology of prelinguistic vocal learning: parents simplify the structure of their speech in response to babbling
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

The ecology of prelinguistic vocal learning: parents simplify the structure of their speech in response to babbling
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *