Skip to main content Accessibility help
×
Home
Hostname: page-component-55597f9d44-ssw5r Total loading time: 0.35 Render date: 2022-08-13T03:26:12.608Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true } hasContentIssue true

The production of /s/-stop clusters by pre-schoolers with hearing loss

Published online by Cambridge University Press:  08 July 2022

Julien MILLASSEAU*
Affiliation:
Department of Linguistics, Macquarie University, 16 University Avenue, Australian Hearing Hub, North Ryde, NSW2109Australia
Laurence BRUGGEMAN
Affiliation:
Department of Linguistics, Macquarie University, 16 University Avenue, Australian Hearing Hub, North Ryde, NSW2109Australia The MARCS Institute for Brain, Behaviour and Development & ARC Centre of Excellence for the Dynamics of Language, Western Sydney University, Locked Bag 1797, Penrith South, NSW2751, Australia
Ivan YUEN
Affiliation:
Department of Linguistics, Macquarie University, 16 University Avenue, Australian Hearing Hub, North Ryde, NSW2109Australia Department of Linguistics and Language Technology, Universität des Saarlandes, Campus C7, 66123, Saarbrücken, Germany
Katherine DEMUTH
Affiliation:
Department of Linguistics, Macquarie University, 16 University Avenue, Australian Hearing Hub, North Ryde, NSW2109Australia
*
Corresponding author. Julien Millasseau, Department of Linguistics, Macquarie University, 16 University Avenue, Australian Hearing Hub, North Ryde, NSW2109Australia. Email. julien.millasseau@mq.edu.au

Abstract

Producing word-initial /s/-stop clusters can be a challenge for English-speaking pre-schoolers. For children with hearing loss (HL), fricatives can be also difficult to perceive, raising questions about their production and representation of /s/-stop clusters. The goal of this study was therefore to determine if pre-schoolers with HL can produce and represent the /s/ in word-initial /s/-stop clusters, and to compare this to their normal hearing (NH) peers. Based on both acoustic and perceptual analysis, we found that children with HL had little /s/-omission, suggesting that their phonological representation of these clusters closely aligns with that of their NH peers.

Type
Brief Research Report
Copyright
© The Author(s), 2022. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Asad, A. N., Purdy, S. C., Ballard, E., Fairgray, L., & Bowen, C. (2018). Phonological processes in the speech of school-age children with hearing loss: Comparisons with children with normal hearing. Journal of Communication Disorders, 74, 1022. https://doi.org/10.1016/j.jcomdis.2018.04.004CrossRefGoogle ScholarPubMed
Bates, D., Mächler, M., Bolker, B., & Walker, S. (2015). Fitting linear mixed-effects models using lme4. Journal of Statistical Software, 67(1), 148. https://doi.org/10.18637/jss.v067.i01CrossRefGoogle Scholar
Baudonck, N., Lierde, K. V., D’haeseleer, E., & Dhooge, I. (2011). A comparison of the perceptual evaluation of speech production between bilaterally implanted children, unilaterally implanted children, children using hearing aids, and normal-hearing children. International Journal of Audiology, 50(12), 912919. https://doi.org/10.3109/14992027.2011.605803CrossRefGoogle ScholarPubMed
Blamey, P. J., Barry, J. G., & Jacq, P. (2001). Phonetic inventory development in young cochlear implant users 6 years postoperation. Journal of Speech, Language, and Hearing Research, 44(1), 7379. https://doi.org/10.1044/1092-4388(2001/007)CrossRefGoogle ScholarPubMed
Boersma, P., and Weenink, D. (2019). Praat: Doing phonetics by computer (Version 6.1.08) [Computer software]. http://www.praat.org/Google Scholar
Bruggeman, L., Millasseau, J., Yuen, I., & Demuth, K. (2021). The acquisition of acoustic cues to onset and coda voicing contrasts by preschoolers with hearing loss. Journal of Speech, Language, and Hearing Research. https://doi.org/10.1044/2021_JSLHR-20-00311CrossRefGoogle Scholar
Catts, H. W., & Kamhi, A. G. (1984). Simplification of /s/ + stop consonant clusters: A developmental perspective. Journal of Speech, Language, and Hearing Research, 27(4), 556561. https://doi.org/10.1044/jshr.2704.556CrossRefGoogle Scholar
Chin, S. B. (2006). Realization of complex onsets by paediatric users of cochlear implants. Clinical Linguistics & Phonetics, 20(7-8), 501508. https://doi.org/10.1080/02699200500266315CrossRefGoogle Scholar
Chin, S. B., & Finnegan, K. R. (2002). Consonant cluster production by paediatric users of cochlear implants. The Volta Review, 102(4), 157174.Google Scholar
Ching, T., Zhang, V., & Hou, S. (2017). The Importance of early intervention for infants and children with hearing loss. In Madell, J., & Flexer, C. (Eds.), Paediatric Audiology (2nd Ed., 139). New York/Stuttgart: Thieme Publishers. https://dspace.nal.gov.au/xmlui/handle/123456789/667Google Scholar
Cho, T., Lee, Y., & Kim, S. (2014). Prosodic strengthening on the /s/-stop cluster and the phonetic implementation of an allophonic rule in English. Journal of Phonetics, 46, 128146. https://doi.org/10.1016/j.wocn.2014.06.003CrossRefGoogle Scholar
Clements, G. N. (1990). The role of the sonority cycle in core syllabification. In Kingston, J. & Beckman, M. E. (Eds.), Papers in Laboratory Phonology (1st ed., pp. 283333). Cambridge: Cambridge University Press. https://doi.org/10.1017/CBO9780511627736.017CrossRefGoogle Scholar
Cox, F., & Palethorpe, S. (2007). Australian English. Journal of the International Phonetic Association, 37(3), 341350.CrossRefGoogle Scholar
Davies, B., Xu Rattanasone, N., Davis, A., & Demuth, K. (2020). The acquisition of productive plural morphology by children with hearing loss. Journal of Speech, Language and Hearing Research, 63(2), 552568. https://doi.org/10.1044/2019_JSLHR-19-00208CrossRefGoogle ScholarPubMed
Demuth, K. (1995). Markedness and the development of prosodic structure. In Beckman, J. (Eds.), Proceedings of the North East Linguistic Society (25, pp. 1325). Amherst, MA: GLSA, University of MassachusettsGoogle Scholar
Eriks-Brophy, A., Gibson, S., & Tucker, S. (2013). Articulatory error patterns and phonological process use of preschool children with and without hearing loss. The Volta Review, 113(2), 87125.Google Scholar
Faes, J., & Gillis, S. (2017). Consonant cluster production in children with cochlear implants: A comparison with normally hearing peers. First Language, 37(4), 319349. https://doi.org/10.1177/0142723717692631CrossRefGoogle Scholar
Fikkert, P. (1994). On the acquisition of prosodic structure (Doctoral thesis). HIL dissertations 6, Leiden University. The Hague: Holland Academic Graphics.Google Scholar
Flipsen, P. Jr. & Parker, R. G. (2008). Phonological patterns in the conversational speech of children with cochlear implants. Journal of Communication Disorders, 41(4), 337357. https://doi.org/10.1016/j.jcomdis.2008.01.003CrossRefGoogle ScholarPubMed
Fulcher, A., Baker, E., Purcell, A., & Munro, N. (2014). Typical consonant cluster acquisition in auditory-verbal children with early-identified severe/profound hearing loss. International Journal of Speech-Language Pathology, 16(1), 6981. https://doi.org/10.3109/17549507.2013.808698CrossRefGoogle ScholarPubMed
Gierut, J. A. (1999). Syllable onsets: Clusters and adjuncts in acquisition. Journal of Speech, Language, and Hearing Research, 42(3), 708726. https://doi.org/10.1044/jslhr.4203.708CrossRefGoogle ScholarPubMed
Goad, H., & Rose, Y. (Eds.) (2003). Special issue: Segmental-prosodic interaction in phonological development: A comparative investigation. Canadian Journal of Linguistics, 48(1–2), 139452.CrossRefGoogle Scholar
Kirk, C., & Demuth, K. (2005). Asymmetries in the acquisition of word-initial and word-final consonant clusters. Journal of Child Language, 32(4), 709734. https://doi.org/10.1017/S0305000905007130CrossRefGoogle ScholarPubMed
Klatt, D. H. (1975). Voice onset time, frication, and aspiration in word-initial consonant clusters. Journal of Speech and Hearing Research, 18(4), 686706. https://doi.org/10.1044/jshr.1804.686CrossRefGoogle ScholarPubMed
Levelt, C., Schiller, N., & Levelt, W. (2000). The acquisition of syllable types. Language Acquisition, 8(3), 237264. https://doi.org/10.1207/S15327817LA0803_2CrossRefGoogle Scholar
Macherey, O., & Carlyon, R. P. (2014). Cochlear implants. Current biology : CB, 24(18), R878 R884. https://doi.org/10.1016/j.cub.2014.06.053CrossRefGoogle ScholarPubMed
McLeod, S., Doorn, J. van, & Reed, V. A. (2001). Normal acquisition of consonant clusters. American Journal of Speech-Language Pathology, 10(2), 99110. https://doi.org/10.1044/1058-0360(2001/011)CrossRefGoogle Scholar
Moeller, M. P., Hoover, B., Putman, C., Arbataitis, K., Bohnenkamp, G., Peterson, B., Lewis, D., Estee, S., Pittman, A., & Stelmachowicz, P. (2007). Vocalizations of infants with hearing loss compared with infants with normal hearing: transition to words. Ear and Hearing, 28(5), 628642. https://doi.org/10.1097/AUD.0b013e31812564c9CrossRefGoogle ScholarPubMed
Munson, B., Edwards, J., & Beckman, M. E. (2005). Phonological knowledge in typical and atypical speech–sound development. Topics in Language Disorders, 25(3), 190206. https://doi.org/10.1097/00011363-200507000-00003CrossRefGoogle ScholarPubMed
Nissen, S. L., & Fox, R. A. (2005). Acoustic and spectral characteristics of young children’s fricative productions: A developmental perspective. The Journal of the Acoustical Society of America, 118(4), 10. https://doi.org/10.1121/1.2010407CrossRefGoogle ScholarPubMed
Ohala, D. (1999). The influence of sonority on children’s cluster reductions. Journal of Communication Disorders, 32(6), 397422. https://doi.org/10.1016/S0021-9924(99)00018-0CrossRefGoogle ScholarPubMed
Pater, J., & Barlow, J. (2002). A typology of cluster reduction: conflicts with sonority. In Skarabela, B., Fish, S., & Do, A. J.-J. (Eds.), Proceedings of the 26th Annual Boston University Conference on Language Development (pp. 533544). Somerville, MA: Cascadilla Press.Google Scholar
R Core Team. (2016). R: A language and environment for statistical computing (Version 3.3.3) [Computer software]. https://www.r-project.org/Google Scholar
Scobbie, J. M., Gibbon, F., Hardcastle, W., & Fletcher, P. (2000). Covert contrast as a stage in the acquisition of phonetics and phonology. In Pierrehumbert, J. B. & Broe, M. (Eds.), Papers in Laboratory Phonology V: Acquisition and the Lexicon (pp. 194207). Cambridge: Cambridge University Press.Google Scholar
Serry, T. A., & Blamey, P. J. (1999). A 4-year investigation into phonetic inventory development in young cochlear implant users. Journal of Speech, Language, and Hearing Research, 42(1), 141154. https://doi.org/10.1044/jslhr.4201.141CrossRefGoogle ScholarPubMed
Smit, A. B. (1993). Phonologic error distributions in the Iowa-Nebraska articulation norms project: word-initial consonant clusters. Journal of Speech, Language, and Hearing Research, 36(5), 931947. https://doi.org/10.1044/jshr.3605.931CrossRefGoogle ScholarPubMed
Song, J. Y., & Demuth, K. (2008). Compensatory vowel lengthening for omitted coda consonants: A phonetic investigation of children’s early representations of prosodic words. Language and Speech, 51(4), 385402. https://doi.org/10.1177/0023830908099071CrossRefGoogle ScholarPubMed
Stelmachowicz, P. G., Pittman, A. L., Hoover, B. M., & Lewis, D. E. (2001). Effect of stimulus bandwidth on the perception of /s/ in normal- and hearing-impaired children and adults. Journal of the Acoustical Society of America, 110(4), 21832190. https://doi.org/10.1121/1.1400757CrossRefGoogle Scholar
van Heuven, W. J. B., Mandera, P., Keuleers, E., & Brysbaert, M. (2014). SUBTLEX-UK: A new and improved word frequency database for British English. Quarterly Journal of Experimental Psychology, 67(6), 11761190. https://doi.org/10.1080/17470218.2013.850521CrossRefGoogle ScholarPubMed
Yavaş, M., & McLeod, S. (2010). Acquisition of /s/ clusters in English-speaking children with phonological disorders. Clinical Linguistics & Phonetics, 24(3), 177187. https://doi.org/10.3109/02699200903362935CrossRefGoogle Scholar

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

The production of /s/-stop clusters by pre-schoolers with hearing loss
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

The production of /s/-stop clusters by pre-schoolers with hearing loss
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

The production of /s/-stop clusters by pre-schoolers with hearing loss
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *