Skip to main content

Children's gradient sensitivity to phonological mismatch: considering the dynamics of looking behavior and pupil dilation

  • Katalin TAMÁSI (a1) (a2), Cristina MCKEAN (a3), Adamantios GAFOS (a1) and Barbara HÖHLE (a1)

In a preferential looking paradigm, we studied how children's looking behavior and pupillary response were modulated by the degree of phonological mismatch between the correct label of a target referent and its manipulated form. We manipulated degree of mismatch by introducing one or more featural changes to the target label. Both looking behavior and pupillary response were sensitive to degree of mismatch, corroborating previous studies that found differential responses in one or the other measure. Using time-course analyses, we present for the first time results demonstrating full separability among conditions (detecting difference not only between one vs. more, but also between two and three featural changes). Furthermore, the correct labels and small featural changes were associated with stable target preference, while large featural changes were associated with oscillating looking behavior, suggesting significant shifts in looking preference over time. These findings further support and extend the notion that early words are represented in great detail, containing subphonemic information.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Children's gradient sensitivity to phonological mismatch: considering the dynamics of looking behavior and pupil dilation
      Available formats
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Children's gradient sensitivity to phonological mismatch: considering the dynamics of looking behavior and pupil dilation
      Available formats
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Children's gradient sensitivity to phonological mismatch: considering the dynamics of looking behavior and pupil dilation
      Available formats
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (, which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
Corresponding author
*Corresponding author: Singapore University of Technology and Design, 8 Somapah Road, Singapore 48732. E-mail:
Hide All
Ahern, S., & Beatty, J. (1979). Pupillary responses during information processing vary with scholastic aptitude test scores. Science, 205(4412), 1289–92.
Arias-Trejo, N., & Plunkett, K. (2010). The effects of perceptual similarity and category membership on early word–referent identification. Journal of Experimental Child Psychology, 105(1), 6380.
Baayen, R. H., Davidson, D. J., & Bates, D. M. (2008). Mixed-effects modeling with crossed random effects for subjects and items. Journal of Memory and Language, 59 (4), 390412.
Bailey, T. M., & Plunkett, K. (2002). Phonological specificity in early words. Cognitive Development, 17(2), 1265–82.
Ballem, K. D., & Plunkett, K. (2005). Phonological specificity in children at 1;2. Journal of Child Language, 32(1), 159–73.
Barr, D. J., Levy, R., Scheepers, C., & Tily, H. J. (2013). Random effects structure for confirmatory hypothesis testing: keep it maximal. Journal of Memory and Language, 68(3), 255–78.
Bates, D., Maechler, M., Bolker, B., & Walker, S. (2014). lme4: linear mixed-effects models using Eigen and S4 [Computer software manual]. Retrieved from <> (R-package-version 1.1-6).
Beatty, J., & Lucero-Wagoner, B. (2000). The pupillary system. In Cacioppo, J. T., Tassinary, L. G., & Berntson, G. G. (Eds.), Handbook of psychophysiology, 2nd ed., Vol. 2 (pp. 142–62). Cambridge University Press.
Dink, J., & Ferguson, B. (2016). eyetrackingR [Computer software manual]. Retrieved from <> (R package version 0.1.6).
Durrant, S., Luche, C. D., Cattani, A., & Floccia, C. (2015). Monodialectal and multidialectal infants’ representation of familiar words. Journal of Child Language, 42(2), 447–65.
Edwards, J., Beckman, M. E., & Munson, B. (2004). The interaction between vocabulary size and phonotactic probability effects on children's production accuracy and fluency in nonword repetition. Journal of Speech, Language, and Hearing Research, 47(2), 421–36.
Fennell, C. T., & Werker, J. F. (2003). Early word learners’ ability to access phonetic detail in well-known words. Language and Speech, 46(2/3), 245–64.
Fikkert, P. (2010). Developing representations and the emergence of phonology: evidence from perception and production. In Fougeron, C., Kuehnert, B., Imperio, M., & Vallee, N. (Eds.), Laboratory phonology, Vol. 10 (pp. 227–60). Berlin: de Gruyter.
Fritzsche, T., & Höhle, B. (2015). Phonological and lexical mismatch detection in 30- month-olds and adults measured by pupillometry. Proceedings of ICPhS XVIII. Retrieved from <>.
Geangu, E., Hauf, P., Bhardwaj, R., & Bentz, W. (2011). Infant pupil diameter changes in response to others’ positive and negative emotions. PLoS One, 6(11), e27132. doi: 10.1371/journal.pone.0027132
Golinkoff, R., Ma, W., Song, L., & Hirsh-Pasek, K. (2013). Twenty-five years using the intermodal preferential looking paradigm to study language acquisition: What have we learned? Perspectives on Psychological Science, 8(3), 316–39.
Hepach, R., & Westermann, G. (2013). Infants’ sensitivity to the congruence of others’ emotions and actions. Journal of Experimental Child Psychology, 115(1), 1629.
Hochmann, J.-R., & Papeo, L. (2014). The invariance problem in infancy: a pupillometry study. Psychological Science, 25(11), 2038–46.
Höhle, B., van de Vijver, R., & Weissenborn, J. (2006). Word processing at 19 months and its relation to language performance at 30 months: a retrospective analysis of data from German-learning children. International Journal of Speech-Language Pathology, 8(4), 356–63.
Jackson, I., & Sirois, S. (2009). Infant cognition: going full factorial with pupil dilation. Developmental Science, 12(4), 670–9.
Jaeger, T. F., Graff, P., Croft, W., & Pontillo, D. (2011). Mixed effect models for genetic and areal dependencies in linguistic typology. Linguistic Typology, 15(2), 281320.
Karatekin, C. (2007). Eye-tracking studies of normative and atypical development. Developmental Review, 27(3), 283348.
Kuipers, J.-R., & Thierry, G. (2013). ERP-pupil size correlations reveal how bilingualism enhances cognitive flexibility. Cortex, 49(10), 2853–60.
Kuznetsova, A., Brockhoff, P. B., & Christensen, R. H. B. (2015). Package ‘lmertest’ [Computer software manual]. Retrieved from <> (R package version 2.0-29).
Luche, C. D., Durrant, S., Poltrock, S., & Floccia, C. (2015). A methodological investigation of the intermodal preferential looking paradigm: methods of analyses, picture selection and data rejection criteria. Infant Behavior and Development, 40, 151–72.
Mani, N., Coleman, J., & Plunkett, K. (2008). Phonological specificity of vowel contrasts at 18-months. Language and Speech, 51(1/2), 321.
Mani, N., Mills, D. L., & Plunkett, K. (2012). Vowels in early words: an event-related potential study. Developmental Science, 15(1), 211.
Mani, N., & Plunkett, K. (2010a). In the infant's mind's ear: evidence for implicit naming in 18-month-olds. Psychological Science, 21(7), 908–13.
Mani, N., & Plunkett, K. (2010b). Twelve-month-olds know their ‘cups’ from their ‘keps’ and ‘tups’. Infancy, 15(5), 445–70.
Mani, N., & Plunkett, K. (2011a). Does size matter? Subsegmental cues to vowel mispronunciation detection. Journal of Child Language, 38(3), 606–27.
Mani, N., & Plunkett, K. (2011b). Phonological priming and cohort effects in toddlers. Cognition, 121(2), 196206.
Marian, V., Bartolotti, J., Chabal, S., & Shook, A. (2012). CLEARPOND: cross-linguistic easy-access resource for phonological and orthographic neighborhood densities. PLoS One, 7(8), e43230. doi: 10.1371/journal.pone.0043230.
Maris, E., & Oostenveld, R. (2007). Nonparametric statistical testing of EEG-and MEG-data. Journal of Neuroscience Methods, 164 (1), 177–90.
Markman, E. M., & Wachtel, G. F. (1988). Children's use of mutual exclusivity to constrain the meanings of words. Cognitive Psychology, 20(2), 121–57.
McKean, C., Letts, C., & Howard, D. (2013). Functional reorganization in the developing lexicon: separable and changing influences of lexical and phonological variables on children's fast-mapping. Journal of Child Language, 40(2), 307–35.
Munson, B., Kurtz, B. A., & Windsor, J. (2005). The influence of vocabulary size, phonotactic probability, and wordlikeness on nonword repetitions of children with and without specific language impairment. Journal of Speech, Language, and Hearing Research, 48(5), 1033–47.
Pinheiro, J. C., Bates, D., DebRoy, S., & Sarkar, D. (2007). Linear and nonlinear mixed effects models. R-Package-version, 3.1-86. Retrieved from: <>.
R Core Team (2014). R: a language and environment for statistical computing [Computer software manual]. Vienna. Retrieved from <>.
Ramon-Casas, M., Swingley, D., Sebastián-Gallés, N., & Bosch, L. (2009). Vowel categorization during word recognition in bilingual toddlers. Cognitive Psychology, 59(1), 96121.
Ren, J., & Morgan, J. L. (2011). Sub-segmental details in early lexical representation of consonants. In Proceedings of the 17th International Congress of Phonetic Sciences. Retrieved from: <>.
Sirois, S., & Jackson, I. (2007). Pupil dilation and infant cognition. In 2007 IEEE 6th International Conference on Development and Learning. IEEE. doi: 10.1109/devlrn.2007.4354056.
Swingley, D. (2003). Phonetic detail in the developing lexicon. Language and Speech, 46(2/3), 265–94.
Swingley, D. (2005). 11-month-olds’ knowledge of how familiar words sound. Developmental Science, 8(5), 432–43.
Swingley, D. (2016). Two-year-olds interpret novel phonological neighbors as familiar words. Developmental Psychology, 52(7), 1011–23.
Swingley, D., & Aslin, R. N. (2000). Spoken word recognition and lexical representation in very young children. Cognition, 76(2), 147–66.
Swingley, D., & Aslin, R. N. (2002). Lexical neighborhoods and the word-form representations of 14-month-olds. Psychological Science, 13(5), 480–4.
Szagun, G., Schramm, S. A., & Stumper, B. (2009). Fragebogen zur frühkindlichen Sprachentwicklung (FRAKIS) und FRAKIS-K (Kurzform). Frankfurt: Pearson Assessment.
Tamási, K. (2017). Measuring children's sensitivity to phonological detail using eye tracking and pupillometry (Doctoral dissertation, Universities of Potsdam, Newcastle, Groningen, Trento, and Macquarie University, Sydney). Retrieved from <>.
Tamási, K., McKean, C., Gafos, A., Fritzsche, T., & Höhle, B. (2017). Pupillometry registers toddler's sensitivity to degrees of mispronunciation. Journal of Experimental Child Psychology (153), 140–8.
Tamási, K., Wewalaarachchi, T. D., Höhle, B., & Singh, L. (2016). Measuring sensitivity to phonological detail in monolingual and bilingual infants using pupillometry. In Proceedings of the 16th Speech Science and Technology Conference. Retrieved from <>.
Tsukahara, J. S., Harrison, T. L., & Engle, R. W. (2016). The relationship between baseline pupil size and intelligence. Cognitive Psychology, 91, 109–23.
van der Meer, E., Beyer, R., Horn, J., Foth, M., Bornemann, B., Ries, J., … Wartenburger, I. (2010). Resource allocation and fluid intelligence: insights from pupillometry. Psychophysiology, 47(1), 158–69.
Vihman, M., & Croft, W. (2007). Phonological development: toward a ‘radical’ templatic phonology. Linguistics, 45(4), 683725.
Vitevitch, M. S., & Luce, P. A. (1998). When words compete: levels of processing in perception of spoken words. Psychological Science, 9(4), 325–9.
Vitevitch, M. S., & Luce, P. A. (1999). Probabilistic phonotactics and neighborhood activation in spoken word recognition. Journal of Memory and Language, 40(3), 374408.
Werker, J. F., Fennell, C. T., Corcoran, K. M., & Stager, C. L. (2002). Infants’ ability to learn phonetically similar words: effects of age and vocabulary size. Infancy, 3(1), 130.
White, K. S., & Morgan, J. L. (2008). Sub-segmental detail in early lexical representations. Journal of Memory and Language, 59(1), 114–32.
Yoshida, K. A., Fennell, C. T., Swingley, D., & Werker, J. F. (2009). Fourteen-month-old infants learn similar-sounding words. Developmental Science, 12(3), 412–18.
Zamuner, T. S., Gerken, L., & Hammond, M. (2004). Phonotactic probabilities in young children's speech production. Journal of Child Language, 31(3), 515–36.
Zesiger, P., Lozeron, E. D., Lévy, A., & Frauenfelder, U. H. (2011). Phonological specificity in 12- and 17-month-old French-speaking infants. Infancy, 17(6), 591609.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Child Language
  • ISSN: 0305-0009
  • EISSN: 1469-7602
  • URL: /core/journals/journal-of-child-language
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed