Skip to main content Accessibility help

Look before you speak: children's integration of visual information into informative referring expressions

  • Catherine DAVIES (a1) and Helene KREYSA (a2)


Children's ability to refer is underpinned by their developing cognitive skills. Using a production task (n = 57), we examined pre-articulatory visual fixations to contrast objects (e.g., to a large apple when the target was a small one) to investigate how visual scanning drives informativeness across development. Eye-movements reveal that although four-year-olds fixate contrast objects to a similar extent as seven-year-olds and adults, this does not result in explicit referential informativeness. Instead, four-year-olds frequently omit distinguishing information from their referring expressions regardless of the comprehensiveness of their visual scan. In contrast, older children make greater use of information gleaned from their visual inspections, like adults. Thus, we find a barrier not to the incidence of contrast fixations by younger children, but to their use of them in referential informativeness. We recommend that follow-up work investigates whether younger children's immature executive skills prevent them from describing referents in relation to contrast objects.


Corresponding author

*Corresponding author. School of Languages, Cultures, and Societies, University of Leeds, Leeds, LS2 9JT, UK. E-mail:


Hide All
Abbot-Smith, K., Nurmsoo, E., Croll, R., Ferguson, H., & Forrester, M. (2016). How children aged 2;6 tailor verbal expressions to interlocutor informational needs. Journal of Child Language, 43(6), 1277–91.
Allen, S., Hughes, M., & Skarabela, B. (2015). The role of cognitive accessibility in children's referential choice. In Serratrice, L. & Allen, S. E. (Eds.), The acquisition of reference (pp. 123–53) (Trends in Language Acquisition Research, Vol. 15). Amsterdam: John Benjamins.
Audacity Team (2014). Audacity(R): free audio editor and recorder [Computer program]. Version 2.0.6, retrieved 12 November 2014 from <>.
Bacso, S. A., & Nilsen, E. S. (2017). What's that you're saying? Children with better executive functioning produce and repair communication more effectively. Journal of Cognition and Development, 18(4), 441–64.
Bates, D., Maechler, M., Bolker, B., & Walker, S. (2015). Fitting linear mixed-effects models using lme4. Journal of Statistical Software, 67(1), 148.
Borovsky, A., Elman, J., & Fernald, A. (2012). Knowing a lot for one's age: vocabulary skill and not age is associated with the timecourse of incremental sentence interpretation in children and adults. Journal of Experimental Child Psychology, 112(4), 417–36.
Brown-Schmidt, S., & Tanenhaus, M. K. (2006). Watching the eyes when talking about size: an investigation of message formulation and utterance planning. Journal of Memory and Language, 54, 592609.
Bunger, A., Trueswell, J., & Papafragou, A. (2012). The relation between event apprehension and utterance formation in children: evidence from linguistic omissions. Cognition, 122, 135–49.
Christensen, D., Zubrick, S. R., Lawrence, D., Mitrou, F., & Taylor, C. L. (2014) Risk factors for low receptive vocabulary abilities in the preschool and early school years in the longitudinal study of Australian children. PLoS ONE 9(7), e101476. doi:10.1371/journal.pone.0101476.
Davies, C., Andrés-Roqueta, C., & Norbury, C. F. (2016) Referring expressions and structural language abilities in children with Specific Language Impairment: a pragmatic tolerance account. Journal of Experimental Child Psychology, 144, 98113.
Davies, C., & Katsos, N. (2010). Over-informative children: production/comprehension asymmetry or tolerance to pragmatic violations? Lingua (Special Issue on Asymmetries in Child Language), 120(8), 1956–72.
Davies, C., & Kreysa, H. (2017). Looking at a contrast object before speaking boosts referential informativeness, but is not essential. Acta Psychologicam, 178, 8799.
De Cat, C. (2015). The cognitive underpinnings of referential abilities. In Serratrice, L. & Allen, S. (Eds.), The acquisition of reference (pp. 263–83). Amsterdam: John Benjamins.
Deutsch, W., & Pechmann, T. (1982). Social interaction and the development of definite descriptions. Cognition, 11, 159–84.
Dickson, W. (1982). Two decades of referential communication research: a review and meta-analysis. In Brainerd, C. J. and Presley, M. (Eds.), Verbal processes in children (pp. 133). New York: Springer Verlag.
Dunn, L. M., Dunn, D. M., Styles, B., & Sewell, J. (2009). The British Picture Vocabulary Scale, 3rd ed. (BPVS-III). London: GL Assessment.
Girbau, D. (2001). Children's referential communication failure: the ambiguity and abbreviation of messages. Journal of Language and Social Psychology, 20(1/2), 81–9.
Glucksberg, S., Krauss, R. M., & Weisberg, R. (1966). Referential communication in nursery school children: method and some preliminary findings. Journal of Experimental Child Psychology, 3, 333–42.
Graf, E., & Davies, C. (2014). The production and comprehension of referring expressions. In Matthews, D. (Ed.), Pragmatic development in first language acquisition: trends in language acquisition research (pp. 161–81). Amsterdam: John Benjamins.
Griffin, Z. M. (2004). Why look? Reasons for eye movements related to language production. In Henderson, J. & Ferreira, F., (Eds.), The integration of language, vision, and action: eye movements and the visual world (pp. 213–47). New York: Taylor and Francis.
Griffin, Z. M., & Bock, K. (2000). What the eyes say about speaking. Psychological Science, 11, 274–9.
Hendriks, P. (2016). Cognitive modeling of individual variation in reference production and comprehension. Frontiers in Psychology, 7, 506. doi: 10.3389/fpsyg.2016.00506.
Hendriks, P. (2017) Symposium discussion: processes underlying children's reference production. 14th International Congress for the Study of Child Language (IASCL), University Lyon 2, France, July 2017.
Krauss, R. M., & Glucksberg, S. (1969). The development of communication: competence as a function of age. Child Development, 40, 255–66.
Matthews, D., Butcher, J., Lieven, E., & Tomasello, M. (2012). Two- and four-year-olds learn to adapt referring expressions to context: effects of distractors and feedback on referential communication. Topics in Cognitive Science, 4, 184210.
Matthews, D., Lieven, E., & Tomasello, M. (2007). How toddlers and preschoolers learn to uniquely identify referents for others: a training study. Child Development, 78(6), 1744–59.
Meyer, A. S., Sleiderink, A. M., & Levelt, W. J. M. (1998). Viewing and naming objects: eye movements during noun phrase production. Cognition, 66(2), B25B33.
Mueller, S. T. (2014). PEBL: the psychology experiment building language (Version 0.14) [Computer experiment programming language]. Retrieved from <> (last accessed June 2014).
Nadig, A. S., & Sedivy, J. C. (2002). Evidence of perspective-taking constraints in children's on-line reference resolution. Psychological Science, 13(4), 329–36.
Nicoladis, E. (2002). The cues that children use in acquiring adjectival phrases and compound nouns: evidence from bilingual children. Brain and Language, 81, 635–48.
Nilsen, E. S., & Graham, S. (2009). The relations between children's communicative perspective-taking and executive functioning. Cognitive Psychology, 58, 220–49.
Nilsen, E. S., Varghese, A., Xu, Z., & Fecica, A. (2015). Children with stronger executive functioning and fewer ADHD traits produce more effective referential statements. Cognitive Development, 36, 6882.
Norbury, C. F. (2014). Sources of variation in developmental language disorders: evidence from eye-tracking studies of sentence production. Philosophical Transactions of the Royal Society B: Biological Sciences, 369(1634). doi:10.1098/rstb.2012.0393
O'Neill, D. K. (1996). Two-year-old children's sensitivity to a parent's knowledge state when making requests. Child Development, 67, 659–77.
O'Neill, D. K., & Happé, F. (2000) Noticing and commenting on what's new: differences and similarities among 22-month-old typically developing children, children with Down syndrome, and children with autism. Developmental Science, 3, 457–78.
Pechmann, T. (1989). Incremental speech production and referential overspecification. Linguistics, 27, 89110.
R Core Team (2015). R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. Retrieved from: <>.
Rabagliati, H., & Robertson, A. (2017). How do children learn to avoid referential ambiguity? Insights from eyetracking. Journal of Memory and Language, 94, 1527.
Seymour, H. N., Roeper, T., & De Villiers, J. G. (2003). DELV-ST (Diagnostic Evaluation of Language Variation) Screening Test. San Antonio TX: Psychological Corporation.
Vanlangendonck, F., Willems, R. M., Menenti, L., & Hagoort, P. (2016). An early influence of common ground during speech planning, Language, Cognition and Neuroscience, 31,6, 741–50.
Varghese, A. L., & Nilsen, E. S. (2013). Incentives improve the clarity of school-age children's referential statements. Cognitive Development, 28, 364–73.
Wardlow, L. (2013). Individual differences in speakers’ perspective taking: the roles of executive control and working memory. Psychonomic Bulletin Review, 20(4), 766–72.
Wardlow, L., & Heyman, G. D. (2016) The roles of feedback and working memory in children's reference production, Journal of Experimental Child Psychology, 150, 180–93.=
Wechsler, D. (2013). Wechsler Preschool and Primary Scale of Intelligence, 4th ed. (WPPSI-IV). London: Pearson.
Whitehurst, G. J. (1976). Development of communication – changes with age and modeling. Child Development, 47(2), 473–82.
Whitehurst, G. J., & Sonnenschein, S. (1981). The development of informative messages in referential communication: knowing when vs. knowing how. In Dickson, W. P. (Ed.), Children's oral communication skills (pp. 127–42). New York: Academic Press.


Related content

Powered by UNSILO

Look before you speak: children's integration of visual information into informative referring expressions

  • Catherine DAVIES (a1) and Helene KREYSA (a2)


Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.