Skip to main content Accessibility help

Novel word learning at 21 months predicts receptive vocabulary outcomes in later childhood

  • Vinaya RAJAN (a1), Haruka KONISHI (a2), Katherine RIDGE (a3), Derek M. HOUSTON (a4), Roberta Michnick GOLINKOFF (a5), Kathy HIRSH-PASEK (a6), Nancy EASTMAN (a4) and Richard G. SCHWARTZ (a7)...


Several aspects of early language skills, including parent-report measures of vocabulary, phoneme discrimination, speech segmentation, and speed of lexical access predict later childhood language outcomes. To date, no studies have examined the long-term predictive validity of novel word learning. We examined whether individual differences in novel word learning at 21 months predict later childhood receptive vocabulary outcomes rather than generalized cognitive abilities. Twenty-eight 21-month-olds were taught novel words using a modified version of the Intermodal Preferential Looking Paradigm. Seventeen children (range 7–10 years) returned to participate in a longitudinal follow-up. Novel word learning in infancy uniquely accounted for 22% of the variance in childhood receptive vocabulary but did not predict later childhood visuospatial ability or non-verbal IQ. These results suggest that the ability to associate novel sound patterns to novel objects, an index of the process of word learning, may be especially important for long-term language mastery.


Corresponding author

*Correspondence author: University of the Sciences, 600 S. 43rd St., Philadelphia, PA 19104. E-mail:


Hide All
Altepeter, T. S. (1989). The PPVT-R as a measure of psycholinguistic functioning: a caution. Journal of Clinical Psychology, 45, 935–41.
Axelsson, E. L., & Horst, J. S. (2013). Testing a word is not a test of word learning. Acta Psychologica, 144, 264–8.
Bates, E., Bretherton, I., & Snyder, L. (1988). From first words to grammar: individual differences and dissociable mechanisms. New York: Cambridge University Press.
Benasich, A. A., & Tallal, P. (2002). Infant discrimination of rapid auditory cues predict later language impairment. Behavioural Brain Research, 136, 3149.
Bernhardt, B. M., Kemp, N., & Werker, J. F. (2007). Early word–object associations and later language development. First Language, 27, 315–28.
Bion, R. A., Borovsky, A., & Fernald, A. (2013). Fast mapping, slow learning: disambiguation of novel word–object mappings in relation to vocabulary learning at 18, 24, and 30 months. Cognition, 126(1), 3953.
Bornstein, M. H., & Hayes, O. M. (1998). Vocabulary competence in early childhood: measurement, latent construct, and predictive validity. Child Development, 69(3), 654–71.
Brown, L., Sherbenou, R. J., & Johnsen, S. K. (1997). TONI-3: Test of Nonverbal Intelligence (3rd ed.). Austin, TX: Pro-Ed.
Can, D. D., Ginsburg-Block, M., Golinkoff, R. M., & Hirsh-Pasek, K. (2013). A long-term predictive validity study: Can the CDI Short Form be used to predict language and early literacy skills four years later? Journal of Child Language, 40(4), 821–35.
Childers, J. S., & Durham, T. W. (1994). Relation of performance on the Kaufman Brief Intelligence Test with the Peabody Picture Vocabulary Test – Revised among preschool children. Perceptual and Motor Skills, 79(3), 1195–9.
Dunn, L. M., & Dunn, L. M. (1997). Peabody Picture Vocabulary Test–Third Edition. Circle Pines, MN: American Guidance Service.
Feldman, H. M., Dale, P. S., Campbell, T. F., Colborn, D. K., Kurs-Lasky, M., Rockette, H. E., & Paradise, J. L. (2005). Concurrent and predictive validity of parent reports of child language at ages 2 and 3 years. Child Development, 76(4), 856–68.
Fennell, C. T., & Werker, J. F. (2003). Early word learners’ ability to access phonetic detail in well-known words. Language and Speech, 46(2/3), 245–64.
Fenson, L., Dale, P. S., Reznick, J. S., Bates, E., Thal, D. J., & Pethick, S. J. (1994). Variability in early communicative development. Monographs of the Society for Research in Child Development, 59 (Serial No. 242).
Fenson, L., Dale, P. S., Reznick, J. S., Thal, D., Bates, E., Harters, J. P., … & Reilly, J. S. (1993). The MacArthur Communicative Development Inventories: user's guide and technical manual. San Diego, CA: Singular Publishing Group.
Fernald, A., Perfors, A., & Marchman, V. A. (2006). Picking up speed in understanding: speech processing efficiency and vocabulary growth across the 2nd year. Developmental Psychology, 42(1), 98116.
Gleitman, L. (1990). The structural sources of verb meanings. Language Acquisition, 1(1) 355.
Golinkoff, R. M., de Villiers, J., Hirsh-Pasek, K., Iglesias, A., & Wilson, M. S. (2017). User's manual for the Quick Interactive Language Screener™ (QUILS™): a measure of vocabulary, syntax, and language acquisition skills in young children. Baltimore, MD: Brookes Publishing Co.
Golinkoff, R. M., & Hirsh-Pasek, K. (2008). How toddlers begin to learn verbs. Trends in Cognitive Sciences, 12(10), 397403.
Golinkoff, R. M., Hirsh-Pasek, K., Bailey, L. M., & Wenger, N. R. (1992). Young children and adults use lexical principles to learn new nouns. Developmental Psychology, 28(1), 99108.
Golinkoff, R. M., Hirsh-Pasek, K., Cauley, K. M., & Gordon, L. (1987). The eyes have it: lexical and syntactic comprehension in a new paradigm. Journal of Child Language, 14, 2345.
Golinkoff, R. M., Ma, W., Song, L., & Hirsh-Pasek, K. (2013). Twenty-five years using the intermodal preferential looking paradigm to study language acquisition: What have we learned? Perspectives on Psychological Science, 8(3), 316–39.
Hart, B., & Risley, T. (1995). Meaningful differences in everyday parenting and intellectual development in young American children. Baltimore, MD: Brookes Publishing Co.
Hirsh-Pasek, K., Adamson, L. B., Bakeman, R., Owen, M. T., Golinkoff, R. M., Pace, A.Suma, K. (2015). The contribution of early communication quality to low-income children's language success. Psychological Science, 26(7), 1071–83.
Hirsh-Pasek, K., & Golinkoff, R. M. (1996). The preferential looking paradigm reveals emerging language comprehension. In McDaniel, D., McKee, C., & Cairns, H. (Eds.), Methods for assessing children's syntax (pp. 105–24). Cambridge, MA: MIT Press.
Hodapp, A. F., & Gerken, K. C. (1999). Correlations between scores for Peabody Picture Vocabulary Test–III and the Wechsler Intelligence Scale for Children–III. Psychological Reports, 84, 1139–42.
Horst, J. S., & Samuelson, L. K. (2008). Fast mapping but poor retention by 24-month-old infants. Infancy, 13(2), 128–57.
Houston, D. M., Stewart, J., Moberly, A., Hollich, G., & Miyamoto, R. T. (2012). Word learning in deaf children with cochlear implants: effects of early auditory experience. Developmental Science, 15(3), 448–61.
Ma, W., Golinkoff, R. M., Houston, D., & Hirsh-Pasek, K. (2011). Word learning in infant- and adult-directed speech. Language Learning and Development, 7, 209–25.
Marchman, V. A., & Fernald, A. (2008). Speed of word recognition and vocabulary knowledge in infancy predict cognitive and language outcomes in later childhood. Developmental Science, 11(3), F9F16.
Mather, E., & Plunkett, K. (2009). Learning words over time: the role of stimulus repetition in mutual exclusivity. Infancy, 14(1), 6076.
Mather, E., & Plunkett, K. (2010). Novel labels support 10-month-olds’ attention to novel objects. Journal of Experimental Child Psychology, 105(3), 232–42.
Merton, R. K. (1968). The Matthew effect in science. Science, 159, 5663.
Newman, R., Ratner, N. B., Jusczyk, A. M., Jusczyk, P. W., & Dow, K. A. (2006). Infants’ early ability to segment the conversational speech signal predicts later language development: a retrospective analysis. Developmental Psychology, 42(4), 643–55.
Rowe, M. L. (2012). A longitudinal investigation of the role of quantity and quality of child-directed speech in vocabulary development. Child Development, 83(5), 1762–74.
Schafer, G., & Plunkett, K. (1998). Rapid word learning by fifteen-month-olds under tightly controlled conditions. Child Development, 69(2), 309–20.
Singh, L., Reznick, J. S., & Xuehua, L. (2012). Infant word segmentation and childhood vocabulary development: a longitudinal analysis. Developmental Science, 15(4) 482–95.
Stager, C. L., & Werker, J. F. (1997). Infants listen for more phonetic detail in speech perception than in word learning tasks. Nature, 388, 381–2.
Swingley, D., & Aslin, R. N. (2002). Lexical neighborhoods and the word-form representations of 14-month-olds. Psychological Science, 13(5), 480–4.
Thal, D., O'Hanlon, L., Clemmons, M., & Fralin, L. (1999). Validity of parent report measure of vocabulary and syntax for preschool children with language impairment. Journal of Speech, Language, and Hearing Research, 42, 482–96.
Tomasello, M., & Mervis, C. B. (1999). The instrument is great, but measuring comprehension is still a problem. Monographs of the Society for Research in Child Development, 59, 174–9.
Tsao, F. M., Liu, H. M., & Kuhl, P. K. (2004). Speech perception in infancy predicts language development in the second year of life: a longitudinal study. Child Development, 75(4), 1067–84.
Wecshler, D. (2003). Wecshler Intelligence Scale for Children–Fourth Edition (WISC-IV). San Antonio, TX: Psychological Corporation.
Werker, J. F., Cohen, L. B., Lloyd, V. L., Casasola, M., & Stager, C. L. (1998). Acquisition of word–object associations by 14-month-old infants. Developmental Psychology, 34(6), 1289–309.
Werker, J. F., & Curtin, S. (2005). PRIMIR: a developmental framework of infant speech processing. Language Learning and Development, 1(2), 197234.
Werker, J. F., Fennell, C. T., Corcoran, K. M., & Stager, C. L. (2002). Infants’ ability to learn phonetically similar words: effects of age and vocabulary size. Infancy, 3(1), 130.
Wojcik, E. H. (2013). Remembering new words: integrating early memory development into word learning. Frontiers in Psychology, 4, 151. doi:10.3389/fpsyg.2013.00151
Woodward, A. L., Markman, E. M., & Fitzsimmons, C. M. (1994). Rapid word learning in 13- and 18-month-olds. Developmental Psychology, 30(4), 553–66.


Novel word learning at 21 months predicts receptive vocabulary outcomes in later childhood

  • Vinaya RAJAN (a1), Haruka KONISHI (a2), Katherine RIDGE (a3), Derek M. HOUSTON (a4), Roberta Michnick GOLINKOFF (a5), Kathy HIRSH-PASEK (a6), Nancy EASTMAN (a4) and Richard G. SCHWARTZ (a7)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed