Skip to main content Accessibility help


  • Timothy Brook (a1)


I have written this essay to address what I regard as a pressing need among China historians for a stronger model of climate change and its impact on state and society during the imperial period. We have all become acutely conscious of climate change as an element of our own world, yet few of us have considered the impact of climate, particularly climate change, on our subjects of study. China is not without its climate historians, and yet the collective research is still in an early phase. Aware of this problem for some time, I published preliminary findings in the form of a chronological profile of climate anomalies through the Yuan and Ming dynasties in 2010. Burying my findings in a textbook has meant that the periodization offered there has captured the interest of some students but gone largely ignored by scholars in the field. Since then I have done further research and have revised some of those findings, and would now like to offer a fuller presentation of methods and findings.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Available formats

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Available formats

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Available formats



Hide All

I thank Richard Unger, Nicola di Cosmo, Peter Perdue, and Jonathan Schlesinger for their helpful advice in the course of writing this essay.

This article has been corrected since original publication. An erratum notice detailing this change was also published (doi:10.1017/jch.2017.12).



Hide All

1 In English, see, among others cited in this essay, Marks, Robert, Tigers, Rice, Silk, and Silt: Environment and Economy in Late Imperial South China (Cambridge: Cambridge University Press, 1998); Zhang, Jiayan, Coping with Calamity: Environmental Change and Peasant Response in Central China, 1736–1949 (Vancouver: University of British Coumbia Press, 2014).

2 Brook, Timothy, The Troubled Empire: China in the Yuan and Ming Dynasties (Cambridge, Mass.: Harvard University Press, 2010), 7178 , 270.

3 Wittfogel, Karl, Oriental Despotism: A Comparative Study of Total Power (New Haven: Yale University Press, 1957).

4 Lattimore was critical of a geographical determinism that imputed changelessness to the “primitive” societies of Asia; see his “The Geographical Factor Mongol History,” and An Inner Asia Approach to the Historical Geography of China,” in his Studies in Frontier History: Collected Papers 1929–1959 (London: Oxford University Press, 1962), 251–58, 492–500. Lattimore's influence was formative for Joseph Fletcher; see The Mongols: Ecological and Social Perspectives,” Harvard Journal of Asiatic Studies 46:1 (June 1986), 1150 .

5 Yuwang, Zeng 曾羽王, “Yiyou biji” 乙酉筆記, reprinted in Qingdai riji huichao 清代日記會抄, edited by shi, Shanghai wenwu baoguan weiyuanhui 上海市文物保管委員會 (Shanghai: Shanghai renmin chubanshe, 1982), 78, 12, 18.

6 Ladurie, Emmanuel Le Roy, Histoire humaine et comparée du climat, I: Canicules et glaciers (XIIIe–XVIIIe siècle) (Paris: Fayard, 2004), 1729 . For a summary of the state of the field on the Little Ice Age based on standard proxies, see Mann, Michael et al. , “Global Signatures and Dynamical Origins of the Little Ice Age and Medieval Climate Anomaly,” Science 326 (Nov. 2009), 1256–60.

7 Quansheng, Ge, Zheng, Jingyun, Tian, Yanyu, Wu, Wenxiang, Fang, Xiuqi, and Wang, Wei-Chyung, “Coherence of Climatic Reconstruction from Historical Documents in China by Different Studies,” International Journal of Climatology 28:8 (2008), 1007–24.

8 Another decisive moment in the history of Inner Asia, before the period under study here, is the expansion of the Mongol Empire early in the thirteenth century. Nicola di Cosmo and his collaborators have argued that this expansion was driven not by climate deterioration but by greater rainfull, which improved pasturage for horses; see Pederson, Neil, Hessl, Amy, Baatarbileg, Nachin, Anchukaitis, Kevin, and Cosmo, Nicola Di, “Pluvials, Droughts, the Mongol Empire, and Modern Mongolia,” Proceedings of the National Academy of Sciences 111 (2014), 4375–79; also Cosmo, Nicola di, “Why Qara Qorum? Climate and Geography in the Early Mongol Empire,” in Archivum Eurasiae Medii Aevi 21 (2014–15), edited by Golden, P.B. et al. (Wiesbaden: Harrassowitz, 2015), 74, 76.

9 On the values and limits of the documentary approach to climate history, see Alexandre, Pierre, Le Climat en Europe au Moyen Age: à l'histoire des variations climatiques de 1000 à 1425, d'après les sources narratives de l'Europe occidentale (Paris: École des hautes études en sciences sociales, 1987), 942 . Alexandre draws from a remarkable ensemble of 2,390 texts selected as reliable from a candidate corpus of over 3,500 texts, plus another 440 notices extracted from such documents as account books. For a persuasive study linking this sort of evidence to political effects in Europe, see McCormick, Michael, Dutton, Paul Edward, and Mayewski, Paul A., “Volcanoes and the Climate Forcing of Carolingian Europe, A.D. 750–970,” Speculum 82 (2007), 865–95.

10 Another official production that could have been used for the Ming dynasty is the court diary of each reign, the Ming shilu 明實錄 (Veritable Records of the Ming). This source includes climate reports from field administrators, though these were submitted reactively and do not readily generate a consistent archive. As Huang Yunmei 黃雲眉has observed of the disasters listed in Ming shi 明史 (the official dynastic history), some appear in the Veritable Records but some do not; Mingshi kaozheng 明史考證 (Beijing: Zhonghua shuju, 1979), 1.264. References to natural disasters have been conveniently extracted in the Ziran zaiyi 自然災異 volume of the Ming shilu leizuan 明實錄類纂 series (Wuhan: Wuhan chubanshe, 1993). In addition to state documents, one could also mine private publications, such as Zeng Yuwang's memoirs, for climate data. Their dispersed character and inconsistency of reporting, however, make it difficult to put them to statistical use.

11 The first comprehensive study using the dynastic histories is Chen Gaoyong 陳高傭, Zhongguo lidai tianzai renhuo biao 中國歷代天災人禍表 (Shanghai: Jinan daxue, 1939; repr., Shanghai shudian, 1986); the compilers supplemented these with material culled from the Qing compendium, Tushu jicheng 圖書集成. Satō Taketoshi 佐藤武敏, Chūgoku saigaishi nenpyō 中国災害史年表 (Tokyo: Kokusho kankōkai, 1993), adds data from the imperial biographies in the dynastic histories. Song Zhenghai 宋正海, Zhongguo gudai ziran zaiyi xiangguanxing nianbiao zonghui 中國古代自然災異相關性年表總匯 (Hefei: Anhui jiaoyu chubanshe, 2002), also uses the dynastic histories, supplemented with data from the Veritable Records and local gazetteers. Although this essay relies on much the same sources, the approach here seeks to address climate history, not disaster history.

12 Lian, Song 宋濂, ed., Yuan shi 元史 (Bejing: Zhonghua shuju, 1976), juan 50.

13 Theoretically the proxy quality of disaster data could have encouraged compilers to pile on references to natural disasters during the reigns of unfit emperors, and discouraged them from recording too many disasters during approved reigns. However, my reading of the dynastic histories has not given me reason to suspect a heavy editorial hand of this sort at work. Court historians were charged with producing history-worthy records, and took this charge seriously. Although the compilers' criteria for what disasters they included are not stated, a consistency of reporting makes them a good starting point for reconstructing climate change. Long Wenbin 龍文彬 complained in his 1887 digest of the Ming statutes that “the two chapters of the Five Phases section of the Ming shi could not entirely record all categories of disaster,” though he could not come up with much to supplement the record; Wenbin, Long, Ming huiyao 明會要 (Beijing: Zhonghua shuju, 1956), juan 50-51.

14 Song Lian, Yuan shi, 1051–1115.

15 Tingyu, Zhang 張廷玉, ed., Ming shi 明史 (Beijing: Zhonghua shuju, 1974), 28.426-30.512 . The Ming shi introduces a few categories not found in the Yuan shi, notably a list of rat infestations between 1616 and 1644 (29.477).

16 Some meteorological events recorded in the histories I have excluded for lack of a sufficient understanding of how to treat them as climate proxies. Yi Tae-jin has been bolder, tabulating astronomical anomalies as meteor falls and deducing their meteorological effects; see his Meteor Falls and Other Natural Phenomena between 1500–1750 as Recorded in the Annals of the Choson Dynasty,” Celestial Mechanics and Dynamical Astronomy 69:1 (1997), 199220 .

17 Songjiang fuzhi 松江府志 (1630), 47.19b-20a, 21b.

18 Qiongzhou fuzhi 瓊州府志 (1618), 1–2.1a.

19 A team of disaster historians under the direction of Jia Guirong 賈貴榮 and Pian Yuqian 駢宇騫 is photoreproducing the disasters sections of gazetteers to produce what they hope will be a complete archive of China's historical disasters. The first compilation, in ten volumes, covers North Zhili, Shanxi, and the northeast: Difangzhi zaiyi ziliao congkan 地方志災異資料叢刊 (Beijing: Guojia tushuguan chubanshe, 2010).

20 I have drawn disaster data from eight provincial gazetteers: Anhui tongzhi 安徽通志 (1877), juan 347; Fujian tongzhi 福建通志 (1871), juan 271; Gansu xin tongzhi 甘肅新通志 (1909), juan 2; Hubei tongzhi 湖北通志 (1921), juan 75; Hunan tongzhi 湖南通志 (1885), juan 243; Shanxi tongzhi 山西通志 (1734), juan 30; Sichuan tongzhi 四川通志 (1816), juan 203; and Zhejiang tongzhi 浙江通志 (1735), juan 109. For provinces for which gazetteers were not readily available to me, I worked from six prefectural gazetteers: Jinan fuzhi 濟南府志 (1840), juan 20; Linqing zhouzhi 臨清州志 (1674), juan 3; Songjiang fuzhi 松江府志 (1630), juan 47; Suzhou fuzhi 蘇州府志 (1642); Yunzhong zhi 雲中志 (1652), the regional gazetteer of Datong, juan 12; and Zhending fuzhi 真定府志 (1762), juan 7.

21 Zhang Chongwang 張崇旺 has recorded some of his disaster data for Jiangnan by year and month, some by year and season, and some by just year; Ming-Qing shiqi Jiangnan diqu de ziran zaihai yu shehui jingji 明清時期江南地區的自然災害與社會經濟 (Fuzhou: Fujian renmin chubanshe, 2006). Dating by month is easier for moment-specific disasters such as earthquakes (217–20) than it is for weather anomalies. In any case, Zhang's principal axis of analysis is space (where disasters happen), not time (how disasters cause effects over many years).

22 Grove, Jean, “The Onset of the Little Ice Age,” in History and Climate: Memories of the Future, edited by Jones, P.D. et al. (New York: Kluwer, 2001), 160–62.

23 Le Roy Ladurie, Histoire humaine et comparée du climat, 76–78, 140–55.

24 Jiangdu xianzhi (1881), 2.13b.

25 William Atwell has offered a similar, if slightly warmer, climate profile for the fifteenth century in his Time, Money, and the Weather: Ming China and the ‘Great Depresion’ of the Mid-Fifteenth Century,” The Journal of Asian Studies 61:1 (February 2002), 8485 . Atwell's data are not specific to China but taken from other northern hemisphere locations; also, they are readings of summer anomalies rather than both summer and winter anomalies.

26 Atwell, “Time, Money, and the Weather,” 101–3, presents the early sixteenth century as more benign than my data suggest. For caustic late-Ming views of how bad the Zhengde era was, see Brook, Timothy, The Confusions of Pleasure: Commerce and Cuilture in Ming China (Berkeley: University of California Press, 1998), 144–47.

27 Gallagher, Louis, trans., China in the Sixteenth Century: The Journals of Matthew Ricci, 1583–1610 (New York: Random House, 1953), 14, 316.

28 This late cold phase has been widely noted for some time; e.g., Jiacheng, Zhang and Crowley, Thomas, “Historical Climate Records in China and Reconstruction of Past Climates,” Journal of Climate 2:8 (August 1989), 841 . Jiacheng, Zhang, The Reconstruction of Climate in China for Historical Times (Beijing: Science Press, 1988), 98, 107, proposes a larger pattern of cold and warm “ages” that does not tally with my findings; nor does his hypothesis of a regular, periodic pattern of drought phases find support in my data.

29 As summarized in Ge et al., “Coherence of Climatic Reconstruction,” 1014.

30 Zhaozhe, Xie 謝肇淛, Wu zazu 五雜俎 (Shanghai: Shanghai shudian, 2001), juan 4.

31 Song Lian, Yuan shi, 1082–84; Ming shi 30.493-505.

32 Atwell, “Time, Money, and the Weather,” 93.

33 On earthquakes in this period, see Gongxu, Gu et al. , Catalogue of Chinese Earthquakes (1831 B.C.–1969 A.D.) (Beijing: Science Press), 1921 ; Guojia dizhen ju diqiu wuli yanjiusuo 國家地震局地球物理研究所, ed., Zhongguo lishi dizhen tuji: yuangu zhi Yuan shiqi 中國歷史地震圖集:遠古之元時期 (Beijing: Zhongguo ditu chubanshe, 1990), 151–56.

34 Gu Gongxu, Catalogue of Chinese Earthquakes, 44–52, 67–69. The Zhangzhou earthquake goes unmentioned in the Ming shi. The epicenter was far enough offshore (30 kilometers) that the destruction was limited.

35 One could propose connections between the eruption of Mount Asama, Japan, in 1331 and the cold phase of 1330–32; the eruption of Mount Iraya, Bataan, in 1464 and the cold phase of 1464–65 (supported by the sulphate spike that year); the eruptions of mounts Iwaki and Asama, Japan, in 1597–98 and the drought and famine of 1598–1601; and the eruption of Mount Iriga, Luzon, in 1628 just prior to the onset of the cool phase of 1629–43. This information is taken from Lentz, Harris, The Volcano Registry: Names, Locations, Descriptions and History for over 1500 Sites (Jefferson, N.C.: McFarland, 1999).

36 Annual precipitation maps compiled by the Central Hydrological Bureau present a year-by-year summary of precipitation based on reports taken from local gazetteers starting in 1470; Zhongyang qixiangju qixiang kexue yanjiuyuan 中國氣象局氣象科學研究院, Zhongguo jin wubai nian hanlao fenbu tuji 中國近五百年旱澇分布圖集 (Beijing: Ditu chubanshe, 1981).

37 Song Lian, Yuan shi XX.1051.52.

38 This profile correlates significantly with Europe; Alexandre, Le Climat en Europe, 776–82.

39 Zhang Tingyu, Ming shi, 30.485.

40 Caviedes, César, El Niño in History: Storming through the Ages (Gainesville: University Press of Florida, 2001), 89 .

41 Quinn, William, “A Study of Southern Oscillation-Related Climatic Activity for A.D. 622–1900 Incorporating Nile River Flood Data,” El Niño: Historical and Paleoclimatic Aspects of the Southern Oscillation, ed. Diaz, H.F. and Markgraf, V. (Cambridge: Cambridge University Press, 1992), 126 . This study is based on observations from regions other than China. Elsewhere, Quinn warns that El Niño is a regional ENSO manifestation, and that an El Niño event need not be matched elsewhere in the Pacific; Quinn, William et al. , “El Niño Occurrences over the Past Four and a Half Centuries,” Journal of Geophysical Research 92 (1987), 14449 .

42 Zhang Jiacheng, The Reconstruction of Climate, 54.

43 Michael Mann et al., “Global Signatures and Dynamical Origins,” 1259, argue in favor of recognizing a stronger La Niña-like pattern in the Pacific during the Little Ice Age than previously recognized. Other research indicates that precipitation in north China may increase in La Niña years; see Shao-wu, Wang and Gao, Wei, “La Niña and its Impact on China's Climate,” in La Niña and its Impacts: Facts and Speculation, ed. Glantz, Michael (Tokyo: United Nations University Press, 2002), 188–89.

44 Sen, Amartya, Poverty and Famines: An Essay on Entitlement and Deprivation (Oxford: Clarendon Press, 1981), 1 .

45 Dyer, Christopher, Standards of Living in the Late Middle Ages: Social Change in England, c. 1200–1500 (Cambridge: Cambridge University Press, 1989), 262–63, based on data in Thorold Rogers's multi-volume History of Agriculture and Prices in England.

46 The first of these famines is documented in Jordan, William, The Great Famine: Northern Europe in the Early Fourteenth Century (Princeton: Princeton University Press, 1996). Jordan notes that climate historians have identified 1310–20 as one of colder winters and wetter summers, without setting 1315 significantly apart from the years that preceded it. Against that record he pits documentary testimony that the winter of 1315 was unparalleled in its severity, and that 1316 was as bad or worse—neither of which the scientific evidence catches (16–18). The environmental context of the great famine gets the full attention of Le Roy Ladurie in his Histoire humaine et comparée du climat, 35–56.

47 Shaoxing fuzhi 紹興府志 (1586), 13.32b.

48 This famine is surveyed in Helen Dunstan's early path-breaking study, The Late Ming Epidemics: A Preliminary Survey,” Ch'ing-shih wen-t'i 3:3 (November 1975), 818 .

49 Mng shenzong shilu (Veritable records of the Wanli era), 197.3a, 11a.

50 The data and method will be presented in greater detail in A Price History of the Ming Dynasty (Cambridge, Mass.: Harvard University Press, forthcoming).

51 As Dyer has noted in his study of standards of living in England, “grain prices reflect a number of influences, including the supply of money, but the quality of the harvest provided the main cause of the sudden surge in prices”; see Standards of Living in the Later Middle Ages, 264. On the relationship between climate and grain prices in south China, see Marks, Robert, “‘It Never Used to Snow’: Climate Variability and Harvest Yields in Late-Imperial South China, 1650–1850,” in Sediments of Time: Environment and Society in Chinese History, edited by Elvin, Mark and Ts'ui-jung, Liu (Cambridge: Cambridge University Press, 1998), 435–44.

52 Further reflection has led me to revise two of the sloughs presented in The Troubled Empire. The main change has been to downgrade what I called the Yuanzhen and Zhengde Sloughs, and to designate more significant sloughs in the Zhiyuan and Yongle eras. My initial model sloughs included dragon sightings, which dynastic historians and gazetteer compilers reported as faithfully as they reported locusts; I have omitted them here on the grounds that their correlation with other anomalies, although richly suggestive for cultural history, is in fact rather weak.

53 Zhang Tingyu, Ming shi, 1.1.

54 Deteriorating conditions between 1434 and 1448 are noted by Twitchett, and Grimm, in The Cambridge History of China, vol. 7 (Cambridge: Cambridge University Press, 1998), 310–12, though their account stops short of Jingtai. Sulphur content in glaciers for the years 1453–54 indicates volcanic activity in this period; Atwell, “Time, Money, and the Weather,” 93.

55 Difficult environmental conditions in the 1540s are noted in passing in James Geiss' account of the Jiajing reign in The Cambridge History of China, vol. 7, 472–73.

56 Le Roy Ladurie locates the return of the Little Ice Age in Europe around 1573, though its full onset was delayed until 1586; Histoire humaine et comparée du climat, 221.

57 These passages come from a memorial Lü submitted to the emperor in 1597, as preserved in Zhang Tingyu, Ming shi, 19/226/5938, quoted in Ailing, Wang 王璦玲, Wan Ming Qing chu xiqu zhi shenmei gousi yu qi yishu chengxian 晚明清初戲曲之審美構思的藝術呈現 (Taipei: Zhongyang yanjiuyuan zhongwen wenzhe yanjiusuo, 2005), 504 .

58 Le Roy Ladurie, Histoire humaine et comparée du climat, 225–37.

59 Marks, Robert, writing on south China, regards 1614 as a turning point; China: Its Environment and History (Lanham: Rowman and Littlefeld, 2012), 188 .

60 Ming shenzong shilu, 538.2b, 539.9b, 540.7b, 542.2b. For reports of cannibalism from the 1615–16 famine in Shandong, see Hong, Xu 徐泓, “Jieshao jize Wanli sishisan, si nian Shandong jihuang daozhi renxiangshi de shiliao” 介紹幾則萬曆四十三,四年山東饑荒導致人相食的史料, Mingdai yanjiu tongxun 6 (2003), 143–49.

61 Zhang Tingyu, Ming shi, 30.512.

62 The rise of the Jurchens may be linked to Wanli Slough II. Nurhaci was still submitting tribute as late as 1615, but drought and cold may have led him to change tactics, escalating his competition with the Ming, especially for the grain grown in Liaodong. In 1618, a cold, dry year, he launched an attack in eastern Liaodong and gained complete control of the region. The Ming counter-campaign the following spring collapsed at the battle of Sarhu on 14 April 1619.

63 The Chongzhen drought is explored in Zheng, Jingyun, Xiao, Lingbo, Fang, Xiuqi, Hao, Zhixin, Ge, Quansheng, and Li, Beibei, “How Climate Change Impacted the Collapse of the Ming Dynasty,” Climatic Change 127:2 (2014), 169–82. This study dates the onset of the drought to 1627. While my data indicate that cold was the initial driving factor, drought became general only as of 1637. In support of the argument that climate anomalies precipitated the fall of the Ming, see Cheng, Hai, Edwards, Lawrence, and Haug, Gerald, “Comment on ‘On Linking Climate to Chinese Dynastic Change: Spatial and Temporal Variations of Monsoonal Rain,” Chinese Science 55:32 (November 2010), 3734–37.

64 For a broad-brush attempt to model the impact of climate anomalies on human disasters in this period, see Xiao, Lingbo, Fang, Xiuqi, Zheng, Jingyun, and Zhao, Wanyi, “Famine, Migration and War: Comparison of Climate Change Impacts and Social Responses in North China in the Late Ming and Late Qing Dynasties,” The Holocene 25:6 (2015), 900910 .

65 The following remarks are based on the summary of Chinese climate research in Ge et al., “Coherence of Climatic Reconstruction.”

66 The usefulness of Wenxue, Gao 高文學, ed., Zhongguo ziran zaihai shi 中國自然災害史 (Beijing: Dizhen chubanshe, 1997), is similarly limited by reliance on ten-year resolution.

67 Le Roy Ladurie, Histoire humaine et comparée du climat, 100.

68 Yao Tinglin 姚廷遴, “Linian ji” 曆年紀 (A year-by-year record), reprinted in Qingdai riji huichao (see n. 5), 44.

* I thank Richard Unger, Nicola di Cosmo, Peter Perdue, and Jonathan Schlesinger for their helpful advice in the course of writing this essay.

This article has been corrected since original publication. An erratum notice detailing this change was also published (doi:10.1017/jch.2017.12).

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Chinese History 中國歷史學刊
  • ISSN: 2059-1632
  • EISSN: 2059-1640
  • URL: /core/journals/journal-of-chinese-history
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed