Hostname: page-component-848d4c4894-ndmmz Total loading time: 0 Render date: 2024-05-07T02:27:20.766Z Has data issue: false hasContentIssue false

712. The relation between the chemical composition of milk and the stability of the caseinate complex: I. General introduction, description of samples, methods and chemical composition of samples

Published online by Cambridge University Press:  01 June 2009

J. C. D. White
Affiliation:
The Hannah Dairy Research Institute, Kirkhill, Ayr
D. T. Davies
Affiliation:
The Hannah Dairy Research Institute, Kirkhill, Ayr

Extract

1. This paper is Part I of a series dealing with the relation between the chemical composition of milk and the stability of the caseinate complex to ethanol (Part II), rennet (Part III) and heat (Part IV).

2. A description is given of the milk samples, which were taken from herd bulk milk, from individual cows in different stages of lactation and also from cows with subclinical mastitis.

3. The methods used to measure the stability of the caseinate complex to the three coagulating agents are described, together with the methods used to make a detailed chemical analysis of the milk samples.

4. The chemical composition of the samples is given and also the relation between composition and stage of lactation, and the interrelations of the concentrations of certain milk constituents.

The authors thank Miss M. H. King and Miss R. E. M. Stevenson for technical assistance, Mr N. H. Strachan and Mr R. C. Voss (West of Scotland Agricultural College) for the sodium and potassium determinations and Dr P. S. Blackburn for the differential cell counts and bacteriological examination of the milks.

Type
Original Articles
Copyright
Copyright © Proprietors of Journal of Dairy Research 1958

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

(1)Blackburn, P. S., Laing, C. M. & Malcolm, D. F. (1955). J. Dairy Res. 22, 37.CrossRefGoogle Scholar
(2)Holm, G. E., Deysher, E. F. & Evans, F. R. (1923). J. Dairy Sci. 6, 556.Google Scholar
(3)Webb, B. H. & Holm, G. E. (1932). J. Dairy Sci. 15, 345.CrossRefGoogle Scholar
(4)Mitamura, K. (1937). J. Fac. Agric. Hokkaido Univ. 41, (2), 97.Google Scholar
(5)Berridge, N. J. (1952). Analyst, 77, 57.Google Scholar
(6)Cole, W. C. & Tarassuk, N. P. (1946). J. Dairy Sci. 29, 421.CrossRefGoogle Scholar
(7)Pyne, G. T. & McHenry, K. A. (1955). J. Dairy Res. 22, 60.Google Scholar
(8)British Standard 1741 (1951). Methods for the Chemical Analysis of Liquid Milk. London: British Standards Institution.Google Scholar
(9)Hiller, A., Plazin, J. & Van Slyke, D. D. (1948). J. biol. Chem. 176, 1401.CrossRefGoogle Scholar
(10)McKenzie, H. A. & Wallace, H. S. (1954). Aust. J. Chem. 7, 55.CrossRefGoogle Scholar
(11)Rowland, S. J. (1948). Personal communication.Google Scholar
(12)Hinton, C. L. & Macara, T. (1927). Analyst, 52, 668.CrossRefGoogle Scholar
(13)Davies, W. L. (1932). Analyst, 57, 79.CrossRefGoogle Scholar
(14)Rowland, S. J. (1938). J. Dairy Res. 9, 42.CrossRefGoogle Scholar
(15)Clark, L. C. (1951). J. Lab. clin. Med. 37, 481.Google Scholar
(16)Allen, R. J. L. (1940). Biochem. J. 34, 858.CrossRefGoogle Scholar
(17)Basu, K. P. & Mukherjee, K. P. (1943). Indian J. vet. Sci. 13, 231.Google Scholar
(18)Lowry, O. H. & Lopez, J. A. (1946). J. biol. Chem. 162, 421.CrossRefGoogle Scholar
(19)Official and Tentative Methods of Analysis of the Association of Official Agricultural Chemists (1945), 6th ed. p. 119. Washington: A.O.A.C.Google Scholar
(20)Smeets, W. T. G. M. (1952). The Determination of the calcium ions concentration in milk ultrafiltrate, Thesis, University of Utrecht.Google Scholar
(21)Smeets, W. T. G. M. & Seekles, L. (1952). Nature, Lond. 169, 802.Google Scholar
(22)Seekles, L. & Smeets, W. T. G. M. (1954). Lait, 34, 610.Google Scholar
(23)Smeets, W. T. G. M. (1955). Ned. melk-en Zuiveltijdschr. 9, 249.Google Scholar
(24)Kreveld, A. van & Minnen, G. van (1955). Ned. melk-en Zuiveltijdschr. 9, 1.Google Scholar
(25)Pyne, G. T. & Ryan, J. J. (1950). J. Dairy Res. 17, 200.Google Scholar
(26)Bushill, J. H., Lampitt, L. H. & Filmer, D. F. (1937). J. Soc. chem. Ind. 56, 411T.Google Scholar
(27)Michaels, G. D., Anderson, C. T., Margen, S. & Kinsell, L. W. (1949). J. biol. Chem. 180, 175.CrossRefGoogle Scholar
(28)Kadt, G. S. de & Minnen, G. van (1943). Rec. Trav. chim. Pays-Bas, 62, 257.Google Scholar
(29)Eilers, H. & Jense, W. F. (1945). Versl. RijkslandbProefst., 's Grav. 50 (15) G, 1081.Google Scholar
(30)Verma, I. S. & Sommer, H. H. (1950). J. Dairy Sci. 33, 397.Google Scholar
(31)Saffran, M. & Denstedt, O. F. (1948). J. biol. Chem. 175, 849.CrossRefGoogle Scholar
(32)Sanders, G. P. (1931). J. biol. Chem. 90, 747.CrossRefGoogle Scholar
(33)Pyne, G. T. (1955). The chemistry of casein. Review article no. 40, Dairy Sci. Abstr. 17, 531.Google Scholar
(34)Christianson, G., Jenness, R. & Coulter, S. T. (1954). Analyt. Chem. 26, 1923.CrossRefGoogle Scholar
(35)Boulet, M. & Rose, D. (1954). J. Dairy Res. 21, 229.CrossRefGoogle Scholar
(36)Evenhuis, N. (1956). Personal communication.Google Scholar
(37)Ramsdell, G. A. & Whittier, E. O. (1944). J. biol. Chem. 154, 413.Google Scholar
(38)Sharp, P. F. & McInerney, T. J. (1927). J. biol. Chem. 75, 177.Google Scholar