Hostname: page-component-7f64f4797f-kjzhn Total loading time: 0 Render date: 2025-11-10T07:44:42.828Z Has data issue: false hasContentIssue false

Is there an appropriate energy level in the diet during the cow transition period? A systematic review and meta-analysis

Published online by Cambridge University Press:  03 November 2025

Ana Carolina Fluck*
Affiliation:
Instituto Federal de Educação, Ciência e Tecnologia do Rio Grande do Sul, Vacaria, RS, Brazil
Rodrigo Macagnan
Affiliation:
Postgraduate Program in Animal Science Universidade Tecnológica Federal do Paraná, Dois Vizinhos, PR, Brazil
Fernando Reimann Skonieski
Affiliation:
Postgraduate Program in Animal Science Universidade Tecnológica Federal do Paraná, Dois Vizinhos, PR, Brazil
Olmar Antônio Denardin Costa
Affiliation:
Department of Food and Animal Production, Universidade do Estado de Santa Catarina, Lages, SC, Brazil
Katia Maria Cardinal
Affiliation:
Instituto Federal de Educação, Ciência e Tecnologia Farroupilha, Alegrete, RS, Brazil
Leonardo Piffer de Borba
Affiliation:
Postgraduate Program in Animal Science Universidade Tecnológica Federal do Paraná, Dois Vizinhos, PR, Brazil
Bruna Schmitz
Affiliation:
Postgraduate Program in Animal Science, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
Vivian Fischer
Affiliation:
Postgraduate Program in Animal Science, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
*
Corresponding author: Ana Carolina Fluck; Email: anacarolinafluck@yahoo.com.br

Abstract

A systematic review and meta-analysis was undertaken to predict the effect of prepartum energy level on postpartum energy metabolism and milk production in dairy cows. In this systematic review, the criteria of PRISMA guidelines were followed: in vivo experimental evaluation of diets with different prepartum energy levels; presentation of initial, final, and/or total results; statement of treatment period including the last 21 days of the prepartum of period; and description of dry matter intake (DMI), milk production, blood parameters and feed efficiency data. A descriptive analysis was performed for better visualization of the data, and Pearson's correlation was used between the collected variables and the prepartum energy intake. The acquired data were subsequently analysed, employing a link function in a polynomial regression model. Prepartum energy intake does not influence DMI or energy balance in the postpartum phase. A higher-energy diet prepartum increased feed efficiency postpartum, accompanied by an increase in blood levels of BHB and NEFA. However, it also resulted in a decrease in milk production and blood glucose.

Information

Type
Research Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of Hannah Dairy Research Foundation.

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Almeida, CPB and Goulart, BNG (2017) How to avoid bias in systematic reviews of observational studies. Revista CEFAC 19, 551555. doi:10.1590/1982-021620171941117CrossRefGoogle Scholar
Andersen, JB, Ridder, C and Larsen, T (2008) Priming the Cow for Mobilization in the Periparturient Period: Effects of supplementing the dry cow with saturated fat or linseed. Journal of Dairy Science 91, 10291043. doi:10.3168/jds.2007-0437CrossRefGoogle ScholarPubMed
Barraclough, RAC, Shaw, DJ, Thorup, VM, Haskell, MJ, Lee, W and Macrae, AI (2020) The behavior of dairy cattle in the transition period: effects of blood calcium status. Journal of Dairy Science 103, 1060410613.10.3168/jds.2020-18238CrossRefGoogle ScholarPubMed
Bernal-Santos, G, Perfield, JW, Barbano, DM, Bauman, DE and Overton, TR (2003) Production responses of dairy cows to dietary supplementation with conjugated linoleic acid (CLA) during the transition period and early lactation. Journal of Dairy Science 86, 32183228. doi:10.3168/jds.s0022-0302(03)73925-3CrossRefGoogle ScholarPubMed
Block, SS, Rhoads, RP, Bauman, DE, Ehrhardt, RA, McGuire, MA, Crooker, BA, Griinari, JM, Mackle, TR, Weber, WJ, Van Amburgh, ME and Boisclair, YR (2003) demonstration of a role for insulin in the regulation of leptin in lactating dairy cows. Journal of Dairy Science 86, 35083515.10.3168/jds.S0022-0302(03)73955-1CrossRefGoogle ScholarPubMed
Butler, M, Patton, J, Murphy, JJ and Mulligan, FJ (2011) Evaluation of a high-fibre total mixed ration as a dry cow feeding strategy for spring-calving Holstein Friesian dairy cows. Livestock Science 136, 8592. doi:10.1016/j.livsci.2010.08.003CrossRefGoogle Scholar
Cañizares, G, Rodrigues, L and Cañizares, MC (2009) Metabolismo de carboidratos não-estruturais em ruminantes. Archives of Veterinary Sciences 14, 6373.Google Scholar
Carvalho, ER, Schmelz-Roberts, NS, White, HM, Doane, PH and Donkin, SS (2011) Replacing corn with glycerol in diets for transition dairy cows. Journal of Dairy Science 94, 908916. doi:10.3168/jds.2010-3581CrossRefGoogle ScholarPubMed
Chung, Y-H, Pickett, MM, Cassidy, TW and Varga, GA (2008) Effects of prepartum dietary carbohydrate source and monensin on periparturient metabolism and lactation in multiparous cows. Journal of Dairy Science 91, 27442758. doi:10.3168/jds.2007-0781CrossRefGoogle ScholarPubMed
Churakov, M, Karlsson, J, Rasmussen, AE and Holtenius, K (2021) Milk fatty acids as indicators of negative energy balance of dairy cows in early lactation. Animal 15, 100253. doi:10.1016/j.animal.2021.100253CrossRefGoogle ScholarPubMed
Contreras, LL, Ryan, CM and Overton, TR (2004) Effects of dry cow grouping strategy and prepartum body condition score on performance and health of transition dairy cows. Journal of Dairy Science 87, 517523. doi:10.3168/jds.s0022-0302(04)73191-4CrossRefGoogle ScholarPubMed
Daneshvar, D, Hashemzadeh, F, Ghasemi, E and Khorvash, M (2020) Effects of stearic acid supplementation and starch concentration in close-up diets on performance and metabolic responses of transition dairy cows. Animal Feed Science and Technology 266, 114516. doi:10.1016/j.anifeedsci.2020.114CrossRefGoogle Scholar
Dann, HM, Litherland, NB, Underwood, JP, Bionaz, M, D’Angelo, A, McFadden, JW and Drackley, JK (2006) Diets during far-off and close-up dry periods affect periparturient metabolism and lactation in multiparous cows. Journal of Dairy Science 89(9), 35633577. doi:10.3168/jds.s0022-0302(06)72396-7CrossRefGoogle ScholarPubMed
De Rensis, F, Dall'Olio, E, Gnemmi, GM, Tummaruk, P, Andrani, M and Saleri, R (2024) Interval from oestrus to ovulation in dairy cows—A key factor for insemination time: a review. Veterinary Science 11, 152. doi:10.3390/vetsci11040152CrossRefGoogle ScholarPubMed
Dorshorst, ME and Grummer, RR (2002) Effects of day relative to parturition and dietary crude protein on rumen fermentation in prepartum transition cows. Journal of Dairy Science 85, 22902298. doi:10.3168/jds.s0022-0302(02)74309-9CrossRefGoogle ScholarPubMed
Douglas, GN, Overton, TR, Bateman, HG, Dann, HM and Drackley, JK (2006) Prepartal plane of nutrition, regardless of dietary energy source, affects periparturient metabolism and dry matter intake in holstein cows. Journal of Dairy Science 89, 21412157. doi:10.3168/jds.s0022-0302(06)72285-8CrossRefGoogle ScholarPubMed
Drong, C, Meyer, U, von Soosten, D, Frahm, J, Rehage, J, Breves, G and Dänicke, S (2016) Effect of monensin and essential oils on performance and energy metabolism of transition dairy cows. Journal of Animal Physiology and Animal Nutrition 100, 537551. doi:10.1111/jpn.12401CrossRefGoogle ScholarPubMed
Erickson, PS and Kalscheur, KF (2020) Nutrition and feeding of dairy cattle. Animal Agriculture: Sustainability, Challenges and Innovations, 157180. doi:10.1016/B978-0-12-817052-6.00009-4CrossRefGoogle Scholar
Galindo, C, Larsen, M, Ouellet, DR, Maxin, G, Pellerin, D and Lapierre, H (2015) Abomasal amino acid infusion in postpartum dairy cows: effect on whole-body, splanchnic, and mammary glucose metabolism. Journal of Dairy Science 98, 79627974. doi:10.3168/jds.2014-9013CrossRefGoogle ScholarPubMed
Gandra, JR, Mingoti, RD, Barletta, RV, Takiya, CS, Verdurico, LC, Freitas, JE Jr, Paiva, PG, Jesus, EF, Calomeni, GD and Rennó, FP (2016) Effects of flaxseed, raw soybeans and calcium salts of fatty acids on apparent total tract digestibility, energy balance and milk fatty acid profile of transition cows. Animal 10, 13031310. doi:10.1017/s1751731116000264CrossRefGoogle ScholarPubMed
Gillund, P, Reksen, O, Gröhn, WT and Karlberg, K (2001) Body condition related to ketosis and reproductive performance in norwegian dairy cows. Journal of Dairy Science 84, 13901396. doi:10.3168/jds.S0022-0302(01)70170-1CrossRefGoogle ScholarPubMed
Girma, DD, Ma, L, Wang, F, Jiang, QR, Callaway, TR, Drackley, JK and Bu, DP (2019) Effects of close-up dietary energy level and supplementing rumen-protected lysine on energy metabolites and milk production in transition cows. Journal of Dairy Science 102, 70597072. doi:10.3168/jds.2018-15962CrossRefGoogle ScholarPubMed
Greenfield, RB, Cecava, MJ, Johnson, TR and Donkin, SS (2000) Impact of dietary protein amount and rumen undegradability on intake, peripartum liver triglyceride, plasma metabolites, and milk production in transition dairy cattle. Journal of Dairy Science 83, 703710. doi:10.3168/jds.s0022-0302(00)74932-0CrossRefGoogle ScholarPubMed
Gobikrushanth, M, Purfield, DC, Colazo, MG, Wang, Z, Butler, ST and Ambrose, DJ (2018) The relationship between serum insulin-like growth factor-1 (IGF-1) concentration and reproductive performance, and genome-wide associations for serum IGF-1 in Holstein cows. Journal of Dairy Science 10, 91549167. doi:10.3168/jds.2018-14535CrossRefGoogle Scholar
Grummer, RR (1993) Etiology of lipid-related metabolic disorders in periparturient dairy cows. Journal of Dairy Science 76, . doi:10.3168/jds.S0022-0302(93)77729-2CrossRefGoogle ScholarPubMed
Haisan, J, Inabu, Y, Shi, W and Oba, M (2021) Effects of pre- and postpartum dietary starch content on productivity, plasma energy metabolites, and serum inflammation indicators of dairy cows. Journal of Dairy Science 104, 43624374. doi:10.3168/jds.2020-19611CrossRefGoogle ScholarPubMed
Hartwell, JR, Cecava, MJ and Donkin, SS (2000) Impact of dietary rumen undegradable protein and rumen-protected choline on intake, peripartum liver triacylglyceride, plasma metabolites and milk production in transition dairy cows. Journal of Dairy Science 83, 29072917. doi:10.3168/jds.s0022-0302(00)75191-5CrossRefGoogle ScholarPubMed
Hausmann, J, Deiner, C, Immig, I, Pieper, R, Starke, A and Aschenbach, JR (2017) Effects of combined supplementation with plant bioactive lipid compounds and biotin on ruminal fermentation, body condition and energy metabolism in transition dairy cows. Animal Feed Science and Technology 225, 2737. doi:10.1016/j.anifeedsci.2017.01CrossRefGoogle Scholar
Havekes, CD, Duffield, TF, Carpenter, AJ and DeVries, TJ (2020) Moisture content of high-straw dry cow diets affects intake, health, and performance of transition dairy cows. Journal of Dairy Science 103, 15001515. doi:10.3168/jds.2019-17557CrossRefGoogle ScholarPubMed
Havekes, CD, Duffield, TF, Carpenter, AJ and DeVries, TJ (2020) Effects of molasses-based liquid feed supplementation to a high-straw dry cow diet on feed intake, health, and performance of dairy cows across the transition period. Journal of Dairy Science 103, 50705089. doi:10.3168/jds.2019-18085CrossRefGoogle ScholarPubMed
Henao-Velásquez, AF, Múnera-Bedoya, OD, Herrera, AC, Agudelo-Trujillo, JH and Cerón-Muñoz, MF (2014) Lactose and milk urea nitrogen: fluctuations during lactation in Holstein cows. Revista Brasileira de Zootecnia 43, 479484. doi:10.1590/S1516-35982014000900004CrossRefGoogle Scholar
Horst, EA, Kvidera, SK and Baumgard, LH (2021) Invited review: the influence of immune activation on transition cow health and performance—A critical evaluation of traditional dogmas. Journal of Dairy Science 104, 83808410. doi:10.3168/jds.2021-20330CrossRefGoogle ScholarPubMed
Huang, W, Tian, Y, Wang, Y, Simayi, A, Yasheng, A, Wu, Z, Li, S and Cao, Z (2014) Effect of reduced energy density of close-up diets on dry matter intake, lactation performance and energy balance in multiparous Holstein cows. Journal of Animal Science and Biotechnology 5(1), 30. doi:10.1186/2049-1891-5-30CrossRefGoogle ScholarPubMed
Impellizzeri, FM and Bizzini, M (2020) Systematic review and meta-analysis: a primer. International Journal of Sports Physical Therapy 7, 493503.Google Scholar
Iqbal, Z, Rashid, MA, Pasha, TN and Bhatti, JA (2020) Effect of wheat- or oat-straw inclusion with wheat bran or corn grain in prepartum diets on postpartum performance of transition dairy cows. Animal Production Science 60, 1521-1530. doi:10.1071/an18608CrossRefGoogle Scholar
Janovick, NA, Boisclair, YR and Drackley, JK (2011) Prepartum dietary energy intake affects metabolism and health during the periparturient period in primiparous and multiparous Holstein cows. Journal of Dairy Science 94, 13851400. doi:10.3168/jds.2010-3303CrossRefGoogle ScholarPubMed
Kerwin, AL, Burhans, WS, Mann, S, Tetreault, M, Nydam, DV and Overton, TR (2022) Transition cow nutrition and management strategies of dairy herds in the northeastern United States: part I-Herd description and performance characteristics. Journal of Dairy Science 105, 53275348. doi:10.3168/jds.2021-20862CrossRefGoogle ScholarPubMed
Kokkonen, T, Taponen, J, Anttila, T, Syrjälä-Qvist, L, Delavaud, C, Chilliard, Y, Tuori, M and Tesfa, AT (2005) Effect of body fatness and glucogenic supplement on lipid and protein mobilization and plasma leptin in dairy cows. Journal of Dairy Science 88, 11271141. doi:10.3168/jds.S0022-0302(05)72779-XCrossRefGoogle ScholarPubMed
Janovick, NA and Drackley, JK (2011) Prepartum dietary management of energy intake affects postpartum intake and lactation performance by primiparous and multiparous Holstein cows. Journal of Dairy Science 93, 30863102. doi:10.3168/jds.2009-2656CrossRefGoogle Scholar
Ji, P, Osorio, JS, Drackley, JK and Loor, JJ (2012) Overfeeding a moderate energy diet prepartum does not impair bovine subcutaneous adipose tissue insulin signal transduction and induces marked changes in peripartal gene network expression1. Journal of Dairy Science 95, 43334351. doi:10.3168/jds.2011-5079CrossRefGoogle ScholarPubMed
Lovatto, P, Lehnen, C, Andretta, I, Carvalho, A and Hauschild, L (2007) Meta-análise em pesquisas científicas: enfoque em metodologias. Revista Brasileira de Zootecnia 36, 285294. doi:10.1590/S1516-35982007001000026CrossRefGoogle Scholar
Mann, S, Yepes, FL, Overton, TR, Wakshlag, JJ, Lock, AL, Ryan, CM and Nydam, DV (2015) Dry period plane of energy: effects on feed intake, energy balance, milk production, and composition in transition dairy cows. Journal of Dairy Science 98, 33663382. doi:10.3168/jds.2014-9024CrossRefGoogle ScholarPubMed
Marett, LC, Auldist, MJ, Wales, WJ, Macmillan, KL, Dunshea, FR and Leury, BJ (2018) Plasma glucose and nonesterified fatty acids response to epinephrine challenges in dairy cows during a 670-d lactation. Journal of Dairy Science 101, 35013513. doi:10.3168/jds.2017-13614CrossRefGoogle ScholarPubMed
McArt, JAA, Nydam, DV and Oetzel, GR (2012) Epidemiology of subclinical ketosis in early lactation dairy cattle. Journal of Dairy Science 95, 50565066. doi:10.3168/jds.2012-5443CrossRefGoogle ScholarPubMed
McArt, JAA, Nydam, DV, OetzeL, GR, Overton, TR and Ospina, PA (2013) Elevated NEFA and BHB and their association with transition dairy cow performance. Veterinary Journal 198, 560570. doi:10.1016/j.tvjl.2013.08.011CrossRefGoogle Scholar
McManaman, JL (2015) Formation of milk lipids: a molecular perspective. Clinical Lipidology 4, 391401. doi:10.2217/clp.09.15CrossRefGoogle Scholar
McNamara, S, O’Mara, FP, Rath, M and Murphy, JJ (2003) Effects of different transition diets on dry matter intake, milk production, and milk composition in dairy cows. Journal of Dairy Science 86, 23972408. doi:10.3168/jds.s0022-0302(03)73834-xCrossRefGoogle ScholarPubMed
Mirzaei-Alamouti, H, Panahiha, P, Patra, AK and Mansouryar, M (2022) Effects of prepartum diet grain type and postpartum starch level on milk production, milk composition, and plasma metabolites of primiparous and multiparous Holstein cows. Animal Feed Science and Technology 291, 115393. doi:10.1016/j.anifeedsci.2022.115393CrossRefGoogle Scholar
Moher, D, Liberati, A, Tetzlaff, J and Altman, D (2009) Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. BMJ 339, 2535b2535. doi:10.1136/bmj.b2535CrossRefGoogle ScholarPubMed
National Academies of Sciences Engineering and Medicine - NASEM (2021) Nutrient Requirements of Dairy Cattle, 8th revised Edn. Washington, D.C: The National Academic Press.Google Scholar
Nazhat, S, Aziz, A, Zabuli, J and Rahmati, S (2021) importance of body condition scoring in reproductive performance of dairy cows: a Review. Open Journal of Veterinary. Medicine 11, 272288. doi:10.4236/ojvm.2021.117018CrossRefGoogle Scholar
Neville, MC and Picciano, MF (1997) Regulation of milk lipid secretion and composition. Annual Review of Nutrition 17, 159183. doi:10.1146/annurev.nutr.17.1.159CrossRefGoogle Scholar
Nielsen, NI, Hameleers, A, Young, FJ, Larsen, T and Friggens, NC (2010) Energy intake in late gestation affects blood metabolites in early lactation independently of milk production in dairy cows. Animal 4, 5260. doi:10.1017/S1751731109990796CrossRefGoogle ScholarPubMed
Oetzel, G (2004) Monitoring and testing dairy herds for metabolic disease. Veterinary Clinics of North America: Food Animal Practice 20, 651674. doi:10.1016/j.cvfa.2004.06.006Google ScholarPubMed
Osborne, VR, Odongo, NE, Cant, JP, Swanson, KC and McBride, BW (2009) Effects of supplementing glycerol and soybean oil in drinking water on feed and water intake, energy balance, and production performance of periparturient dairy cows. Journal of Dairy Science 92, 698707. doi:10.3168/jds.2008-1554CrossRefGoogle ScholarPubMed
Osorio, JS, Ji, P, Drackley, JK, Luchini, D and Loor, JJ (2013) Supplemental Smartamine M or MetaSmart during the transition period benefits postpartal cow performance and blood neutrophil function. Journal of Dairy Science 96, 62486263. doi:10.3168/jds.2012-5790CrossRefGoogle ScholarPubMed
Papakostidis, C and Giannoudis, PV (2023) Meta-analysis. What have we learned? Injury 54, S33S34. doi:10.1016/j.injury.2022.06.012CrossRefGoogle ScholarPubMed
Pérez-Báez, J, Risco, CA, Chebel, RC, Gomes, GC, Greco, LF, Tao, S and Galvão, KN (2019) Association of DMI and energy balance prepartum and postpartum with health disorders postpartum: part II. Ketosis and clinical mastitis. Journal of Dairy Science 102, 91519164. doi:10.3168/jds.2018-15879CrossRefGoogle ScholarPubMed
Piantoni, P, Ylioja, CM and Allen, MS (2015) Feed intake is related to changes in plasma nonesterified fatty acid concentration and hepatic acetyl CoA content following feeding in lactating dairy cows. Journal of Dairy Science 98, 68396847. doi:10.3168/jds.2014-9085CrossRefGoogle ScholarPubMed
Piepenbrink, MS, Marr, AL, Waldron, MR, Butler, WR, Overton, TR, Vázquez-Añón, M and Holt, MD (2004) Feeding 2-hydroxy-4-(methylthio)-butanoic acid to periparturient dairy cows improves milk production but not hepatic metabolism. Journal of Dairy Science 87, 10711084. doi:10.3168/jds.s0022-0302(04)73253-1CrossRefGoogle Scholar
Pigott, TD and Polanin, JR (2020) Methodological guidance paper: high-quality meta-analysis in a systematic review. Review of Educational Research 90, 2446. doi:10.3102/0034654319877153CrossRefGoogle Scholar
Pineda, A, Cardoso, FC, Murphy, MR and Drackley, JK (2022) Effects of dietary energy density and feeding strategy during the dry period on feed intake, energy balance, milk production, and blood metabolites of Holstein cows. JDS Communications 3, 403407. doi:10.3168/jdsc.2022-0233CrossRefGoogle ScholarPubMed
Prado, do RM, Palin, MF, do Prado, IN, dos Santos, GT, Benchaar, C and Petit, HV (2016) Milk yield, milk composition, and hepatic lipid metabolism in transition dairy cows fed flaxseed or linola. Journal of Dairy Science 99, 88318846. doi:10.3168/jds.2016-11003CrossRefGoogle ScholarPubMed
Qiao, K, Jiang, R, Contreras, GA, Xie, L, Pascottini, OB, Opsomer, G and Dong, Q (2024) The Complex Interplay of Insulin Resistance and Metabolic Inflammation in Transition Dairy Cows. Animals 14, 832. doi:10.3390/ani14060832CrossRefGoogle ScholarPubMed
Rabelo, E, Bertics, SJ, Mackovic, J and Grummer, RR (2001) Strategies for increasing energy density of dry cow diets. Journal of Dairy Science 84, 22402249. doi:10.3168/jds.s0022-0302(01)74671-1CrossRefGoogle ScholarPubMed
Rastani, RR, Grummer, R., Bertics, SJ, Gümen, A, Wiltbank, MC, Mashek, DG and Schwab, MC (2005) Reducing dry period length to simplify feeding transition cows: milk production, energy balance, and metabolic profiles. Journal of Dairy Science 88, 10041014. doi:10.3168/jds.s0022-0302(05)72768-5CrossRefGoogle ScholarPubMed
Redfern, EA, Sinclair, AL and Robinson, PA (2021a) Dairy cow health and management in the transition period: the need to understand the human dimension. Research in Veterinary Science 137, 94101. doi:10.1016/j.rvsc.2021.04.029CrossRefGoogle Scholar
Redfern, EA, Sinclair, AL and Robinson, PA (2021b) Why isn't the transition period getting the attention it deserves? Farm advisors’ opinions and experiences of managing dairy cow health in the transition period. Preventive Veterinary Medicine 194, 105424. doi:10.1016/j.prevetmed.2021.105424CrossRefGoogle Scholar
Roche, JR, Friggens, NC, Kay, JK, Fisher, MW, Stafford, KJ and Berry, DP (2009) Invited review: body condition score and its association with dairy cow productivity, health, and welfare. Journal of Dairy Science 92, 57695801. doi:10.3168/jds.2009-2431CrossRefGoogle ScholarPubMed
Salin, S, Vanhatalo, A, Elo, K, Taponen, J, Boston, RC and Kokkonen, T (2017) Effects of dietary energy allowance and decline in dry matter intake during the dry period on responses to glucose and insulin in transition dairy cows. Journal of Dairy Science 100, 52665280. doi:10.3168/jds.2016-11871CrossRefGoogle ScholarPubMed
Salin, S, Vanhatalo, A, Jaakkola, S, Elo, K, Taponen, J, Boston, RC and Kokkonen, T (2018) Effects of dry period energy intake on insulin resistance, metabolic adaptation, and production responses in transition dairy cows on grass silage–based diets. Journal of Dairy Science 101, 1136411383. doi:10.3168/jds.2018-14728CrossRefGoogle ScholarPubMed
Selim, S, Salin, S, Taponen, J, Vanhatalo, A, Kokkonen, T and Elo, KT (2014) Prepartal dietary energy alters transcriptional adaptations of the liver and subcutaneous adipose tissue of dairy cows during the transition period. Physiological Genomics 46, 328337. doi:10.1152/physiolgenomics.00115.2013CrossRefGoogle ScholarPubMed
Sammad, A, Khan, MZ, Abbas, Z, Hu, L, Ullah, Q, Wang, Y, Zhu, H and Wang, Y (2022) Major nutritional metabolic alterations influencing the reproductive system of postpartum dairy cows. Metabolites 12, 60. doi:10.3390/metabo12010060CrossRefGoogle ScholarPubMed
SAS Institute Inc (2018) SAS/STAT® 15.1 User's Guide: High-Performance Procedures. Cary, NC, USA: SAS Institute Inc.Google Scholar
Sauvant, D, Schmidely, P, Daudin, JJ and St-Pierre, NR (2008) Meta-analyses of experimental data in animal nutrition. Animal 2, 12031214. doi:10.1017/S1751731108002280CrossRefGoogle ScholarPubMed
Schären, M, Riefke, B, Slopianka, M, Keck, M, Gruendemann, S, Wichard, J, Brunner, N, Klein, S, Snedec, T, Theinert, KB, Pietsch, F, Rachidi, F, Köller, G, Bannert, E, Spilke, J and Starke, A (2021) Aspects of transition cow metabolomics—Part III: alterations in the metabolome of liver and blood throughout the transition period in cows with different liver metabotypes. Journal of Dairy Science 104, 92459262. doi:10.3168/jds.2020-19056CrossRefGoogle ScholarPubMed
Schirmann, K, Chapinal, N, Weary, DM, Vickers, L and Von Keyserlingk, MAG (2013) Rumination and feeding behavior before and after calving in dairy cows. Journal of Dairy Science 96, 70887092. doi:10.3168/jds.2013-7023CrossRefGoogle ScholarPubMed
Sguizzato, AL, Marcondes, MI, Dijkstra, J, Valadares Filho, SC, Campos, MM, Machado, FS, Silva, BC and Rotta, PP (2020) Energy requirements for pregnant dairy cows. PLoS One 15, e0235619. doi:10.1371/journal.pone.0235619CrossRefGoogle ScholarPubMed
Stevenson, JS and Atanasov, B (2022) Changes in body condition score from calving to first insemination and milk production, pregnancy per AI, and pregnancy loss in lactating dairy cows: a meta-analysis. Theriogenology 193, 93102. doi:10.1016/j.theriogenology.2022.09.010CrossRefGoogle Scholar
Štolcová, M, Řehák, D and Bartoň, L (2021) Changes in milk ketone and fatty acid concentrations during early lactation in Holstein and Fleckvieh cows. Czech Journal of Animal Science 66, 477486. doi:10.17221/122/2021-CJASCrossRefGoogle Scholar
Su, H, Wang, Y, Zhang, Q, Wang, F, Cao, Z, Rahman, MAU, Cao, B, Li, S (2013) Responses of energy balance, physiology, and production for transition dairy cows fed with a low-energy prepartum diet during hot season. Tropical Animal Health and Production 45, 14951503. doi:10.1152/10.1007/s11250-013-0388-1CrossRefGoogle ScholarPubMed
Sundrum, A (2015) Metabolic disorders in the transition period indicate that the dairy cows’ ability to adapt is overstressed. Animals 5, 9781020. doi:10.3390/ani5040395CrossRefGoogle ScholarPubMed
Suthar, V, Canelas-Raposo, J, Deniz, A and Heuwieser, W (2013) Prevalence of subclinical ketosis and relationships with postpartum diseases in European dairy cows. Journal of Dairy Science 96, 29252938. doi:10.3168/jds.2012-6035CrossRefGoogle ScholarPubMed
Tremblay, M, Kammer, M, Lange, H, Plattner, S, Baumgartner, C, Stegeman, JA, Duda, J, Mansfeld, R and Döpfer, D (2018) Identifying poor metabolic adaptation during early lactation in dairy cows using cluster analysis. Journal of Dairy Science 101, 73117321. doi:10.3168/jds.2017-13582CrossRefGoogle ScholarPubMed
Useni, BA, Muller, CJC and Cruywagen, CW (2018) Pre and postpartum effects of starch and fat in dairy cows: a review. South African Journal of Animal Science 48, 413426. doi:10.4314/sajas.v48i3.2CrossRefGoogle Scholar
Vasquez, JA, McCarthy, MM, Richards, BF, Perfield, KL, Carlson, DB, Lock, AL and Drackley, JK (2021) Effects of prepartum diets varying in dietary energy density and monensin on early-lactation performance in dairy cows. Journal of Dairy Science 104, 28812895. doi:10.3168/jds.2020-19414CrossRefGoogle ScholarPubMed
Vazquez-Añon, M, Bertics, S, Luck, M, Grummer, RR and Pinheiro, J (1994) Peripartum liver triglyceride and plasma metabolites in dairy cows. Journal of Dairy Science 77, 15211528. doi:10.3168/jds.s0022-0302(94)77092-2CrossRefGoogle ScholarPubMed
Vickers, LA, Weary, DM, Veira, DM and von Keyserlingk, MAG (2013) Feeding a higher forage diet prepartum decreases incidences of subclinical ketosis in transition dairy cows. Journal of Animal Science 91, 886894. doi:10.2527/jas.2011-4349CrossRefGoogle ScholarPubMed
Wang, Y, Wang, J, Wang, C, Wang, JK, Chen, B, Liu, JX, Cao, H and Guo, FC (2010) Effect of dietary antioxidant and energy density on performance and anti-oxidative status of transition Cows. Animal Bioscience 23, 1299-1307. doi:10.5713/ajas.2010.90529Google Scholar
Wang, Y, Huo, P, Sun, Y and Zhang, Y (2019) Effects of body condition score changes during peripartum on the postpartum health and production performance of primiparous dairy cows. Animals 19, 1159. doi:10.3390/ani9121159CrossRefGoogle Scholar
Wankhade, PR, Manimaran, A, Kumaresan, A, Jeyakumar, S, Ramesha, KP, Sejian, V, Rajendran, D and Varghese, MR (2017) Metabolic and immunological changes in transition dairy cows: a review. Veterinary World 10, 13671377. doi:10.14202/vetworld.2017.1367-1377CrossRefGoogle ScholarPubMed
Whitaker, DA (2004) Metabolic profiles. In Andrews, AH, Blowey, RW, Boyd, H and Eddy, RG, Bovine Medicine: Diseases and Husbandry of Cattle. 2nd Edn. Oxford: Blackwell Science, pp. 804817.Google Scholar
Yang, Z, Dong, S, Zheng, Y, Kon, F, Lv, J, Sun, X, Wang, Y, Cao, Z, Wang, W and Li, S (2022) Effects of concentrate levels in prepartum diet on milk performance, energy balance and rumen fermentation of transition montbéliarde–Holstein crossbred cows. Animals 12, 1051. doi:10.3390/ani12091051CrossRefGoogle ScholarPubMed
Zambrano, W and Marques, P JR (2009) Perfil metabólico de vacas mestizas lecheras del preparto al quinto mes de lactación. Zootecnia Tropical 27, 475488.Google Scholar
Zhang, M, Zhang, S, Hui, Q, Lei, L, Du, X, Gao, W, Zhang, R, Liu, G, Li, X and Li, X (2015) β-Hydroxybutyrate facilitates fatty acids synthesis mediated by sterol regulatory element-binding protein1 in bovine mammary epithelial cells. Cellular Physiology and Biochemistry 37, 21152124. doi:10.1159/000438569CrossRefGoogle ScholarPubMed
Zhao, W, Chen, X, Xiao, J, Chen, XH, Zhang, XF, Wang, T, Zhen, G and Qin, GX (2019) Prepartum BCS affects milk production, lipid metabolism, and oxidation status of Holstein cows. Animal Bioscience 32, 18891896. doi:10.5713/ajas.18.0817Google ScholarPubMed
Zhou, Z, Vailati-Riboni, M, Trevisi, E, Drackley, JK, Luchini, DN and Loor, JJ (2016) Better postpartal performance in dairy cows supplemented with rumen-protected methionine compared with choline during the peripartal period. Journal of Dairy Science 99(11), 87168732. doi:10.3168/jds.2015-10525CrossRefGoogle ScholarPubMed