Skip to main content Accessibility help

Assessing the potential of photogrammetry to monitor feed intake of dairy cows

  • Victor Bloch (a1), Harel Levit (a1) and Ilan Halachmi (a1)


We address the hypothesis that individual cow feed intake can be measured in commercial farms through the use of a photogrammetry method. Feed intake and feed efficiency have a significant economic value for the farmer. A common method for measuring feed mass in research is a feed mass weighing system, which is excessively expensive for commercial farms. However, feed mass can be estimated by its volume, which can be measured by photogrammetry. Photogrammetry applies cameras along the feed-lane, photographing the feed before and after the cow visits the feed-lane, and calculating the feed volume. In this study, the precision of estimating feed mass by its volume was tested by comparing measured mass and calculated volume of feed heaps. The following principal factors had an impact on the precision of this method: camera quality, lighting conditions, image resolution, number of images, and feed density. Under laboratory conditions, the feed mass estimation error was 0·483 kg for heaps up to 7 kg, while in the cowshed the estimation error was 1·32 kg for up to 40 kg. A complementary experiment showed that the natural feed compressibility causes about 85% of uncertainty in the mass estimation error.


Corresponding author

Authors for correspondence: Ilan Halachmi, Email:


Hide All
Bach, A, Iglesias, C & Busto, I (2004) Technical note: A computerized system for monitoring feeding behavior and individual feed intake of dairy cattle. Journal of Dairy Science 87 42074209.
Borchersen, S, Hansen, NW & Borggaard, C (2018) System for determining feed consumption of at least one animal. Google Patents.
Buza, MH, Holden, LA, White, RA & Ishler, VA (2014) Evaluating the effect of ration composition on income over feed cost and milk yield. Journal of Dairy Science 97 30733080.
Chapinal, N, Veira, DM, Weary, DM & von Keyserlingk, MA (2007) Technical note: validation of a system for monitoring individual feeding and drinking behavior and intake in group-housed cattle. Journal of Dairy Science 90 57325736.
DeVries, TJ, von Keyserlingk, MA, Weary, DM & Beauchemin, KA (2003) Technical note: validation of a system for monitoring feeding behavior of dairy cows. Journal of Dairy Science 86 35713574.
Ferris, CP, Keady, TWJ, Gordon, FJ & Kilpatrick, DJ (2006) Comparison of a Calan gate and a conventional feed barrier system for dairy cows: feed intake and cow behaviour. Irish Journal of Agricultural and Food Research 45 149156.
Halachmi, I, Edan, Y, Maltz, E, Peiper, UM, Moallem, U & Brukental, I (1998) A real-time control system for individual dairy cow food intake. Computers and Electronics in Agriculture 20 131144.
Halachmi, I, Meir, YB, Miron, J & Maltz, E (2016) Feeding behavior improves prediction of dairy cow voluntary feed intake but cannot serve as the sole indicator. Journal of Animal Science 10 15011506.
Herd, RM, Archer, JA & Arthur, PF (2003) Reducing the cost of beef production through genetic improvement in residual feed intake: opportunity and challenges to application. Journal of Animal Science 81 917.
Gonzalez, LA, Tolkamp, BJ, Coffey, MP, Ferret, A & Kyriazakis, I (2008) Changes in feeding behavior as possible indicators for the automatic monitoring of health disorders in dairy cows. Journal of Dairy Science 91 10171028.
Krawczel, PD, Klaiber, LM, Thibeau, SS & Dann, HM (2012) Technical note: data loggers are a valid method for assessing the feeding behavior of dairy cows using the Calan Broadbent Feeding System. Journal of Dairy Science 95 44524456.
Lassen, J, Thomasen, JR, Hansen, RH, Nielsen, GGB, Olsen, E, Stentebjerg, PRB, Hansen, NW & Søren, B (2018) Individual measure of feed intake on in-house commercial dairy cattle using 3D camera system. In The World Congress on Genetics Applied to Livestock Production vol. Technologies - Novel Phenotypes, p. 635, (Ed. Blair, H). Auckland, New Zealand.
Mendes, EDM, Carstens, GE, Tedeschi, LO, Pinchak, WE & Friend, TH (2011) Validation of a system for monitoring feeding behavior in beef cattle. Journal of Animal Science 89 29042910.
Mikhail, EM, Bethel, JS & McGlone, JC (2001) Introduction to Modern Photogrammetry. John Wiley & Sons, New York.
National Research Council (2001) Nutrient Requirements of Dairy Cattle: Seventh Revised Edition. Washington, DC: The National Academies Press.
National Research Council (2007) Nutrient Requirements of Small Ruminants: Sheep, Goats, Cervids, and New World Camelids. Washington, DC: The National Academies Press.
Shelley, AN (2013) Monitoring Dairy Cow Feed Intake Using Machine Vision. Theses and Dissertations – Electrical and Computer Engineering, University of Kentucky, University of Kentucky, Lexington, Kentucky, USA. Paper 24.
Shelley, AN, Lau, DL, Stone, AE & Bewley, JM (2016) Short communication: measuring feed volume and weight by machine vision. Journal of Dairy Science 99 386391.
Stajnko, D, Vindiš, P, Marjan, J & Maksimiljan, B (2015) Non Invasive Estimating of Cattle Live Weight Using Thermal Imaging. New Trends in Technologies: Control, Management, Computational Intelligence and Network Systems. Chapter 13.
Vandehaar, MJ (1998) Efficiency of nutrient use and relationship to profitability on dairy farms. Journal of Animal Science 81 272282.
Volden, H (ed.) (2011) NorFor-The Nordic Feed Evaluation System. The Netherlands: Wageningen Academic Publishers.
Wang, Z, Nkrumah, JD, Li, C, Basarab, JA, Goonewardene, LA, Okine, EK, Crews, DH & Moore, SS (2006) Test duration for growth, feed intake, and feed efficiency in beef cattle using the GrowSafe System. Journal of Animal Science 84 22892298.


Related content

Powered by UNSILO
Type Description Title
Supplementary materials

Bloch et al. supplementary material
Tables S1-S4 and Figure S1

 PDF (292 KB)
292 KB

Assessing the potential of photogrammetry to monitor feed intake of dairy cows

  • Victor Bloch (a1), Harel Levit (a1) and Ilan Halachmi (a1)


Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.